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Interplay between

hydrodynamic gradient expansion and transient modes 

in holography, kinetic theory and relativistic fluid mechanics

many works, but see
1610.02023 [hep-th] lecture notes

1707.02282 [hep-ph] review with Florkowski and Spalinski



Hydrodynamization

1609.04803 with Kurkela & Spalinski

1103.3452 with Janik & Witaszczyk



Hydrodynamization (across conformal theories)
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Viscous hydrodynamics works despite huge anisotropy in the system

�P
E/3 =

2

⇡
w̃�1

1609.04803 with Kurkela & Spalinski

N=4 SYM

EKT with ⌘/s = 0.624

RTA with ⌘/s = 0.624

RTA with ⌘/s = 1/(4⇡)

this rescaled variable is motivated by 1512.05347

0906.4426, 1011.3562 by Chesler & Yaffe; 1103.3452 with Janik & Witaszczyk

by Keegan, Kurkela, Romatschke, van der Schee



Relativistic hydrodynamics 
an EFT of the slow (?) evolution of conserved 
currents in collective media close to equilibrium (?)hydrodynamics is

DOFs: always local energy density   and local flow velocity      (              )
EOMs: conservation eqns                   for         expanded in gradients

✏ uµ u⌫u
⌫ = �1

Tµ⌫ = ✏uµu⌫ + P (✏){ gµ⌫ + uµu⌫ }� ⌘(✏)�µ⌫ � ⇣(✏){ gµ⌫ + uµu⌫ }(r · u) + . . .

shear viscosity
contribution

bulk viscosity
(vanishes for CFTs)

microscopic
input:

EoS
P (✏) =

1

3
✏(             for CFTs)

rµhTµ⌫i = 0 hTµ⌫i

hTµ⌫i

This talk: behaviour of the gradient expansion at large orders in the number of
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⇧µ⌫

�P
E/3 =

2

⇡
w̃�1

r



Hydrodynamic & transient modes



Tµ⌫ = ✏uµu⌫ + P (✏){ gµ⌫ + uµu⌫ }� ⌘(✏)�µ⌫ � ⇣(✏){ gµ⌫ + uµu⌫ }(r · u) + . . .

Theories of (viscous) hydrodynamics

There is a crucial subtlety:                                                                       does not
have a well-posed initial value problem                           hydrodynamic theories
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rµ

⇣
+ . . .

⌘
= 0

Overall idea (MIS): make         obey an independent PDE ensuring its         to �⌘ �µ⌫

decay timescale

Modern incarnation: Baier-Romatschke-Son-Starinets-Stephanov theory

BRSSS theory will be treated here on equal footing with holography & kinetic theory

0712.2451

(⌧⇡ u
↵D↵ + 1) [⇡µ⌫ � (�⌘ �µ⌫)] = 0 ⇡µ⌫ = �⌘ �µ⌫ � ⌧⇡ u

↵D↵ ⇡µ⌫ � ⌧⇡ u
↵D↵ (⌘ �µ⌫)

⇡µ⌫ = �⌘�µ⌫ � ⌧⇡ u
↵D↵⇡

µ⌫ + �1⇡
hµ

↵�
⌫i↵ + �2⇡

hµ
↵⌦

⌫i↵ + �3⌦
hµ

↵⌦
⌫i↵

⇡µ⌫

⇡



Modes in BRSSS theory
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Mode = solution of linearized equations of finite-T theory without any sources

Technical issue: tensor perturbs.           channels (here everywhere sound channel):

Assuming momentum along x3 direction                     :      ,        &�T �u3 �⇡33e�i! x

0+i k x

3

⇡µ⌫ = �⌘�µ⌫ � ⌧⇡ u
↵D↵⇡

µ⌫ + �1⇡
hµ

↵�
⌫i↵ + �2⇡

hµ
↵⌦

⌫i↵ + �3⌦
hµ

↵⌦
⌫i↵

conservation
+

!3 + (. . .)!2 + (. . .)! + (. . .) = 0

two modes:
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���
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Modes in Einstein-Hilbert holography = QNMs

k = 0.1 T
k = 1.0 T
k = 10 T

!/T ⇡ ± 1p
3

k/T � i
2

3

1

4⇡
(k/T )2 ± 3� 2 log 2

24

p
3⇡2

(k/T )3

ds

2 =
L

2

u

2

n

�2dx0
du� (1� ⇡

4
T

4
u

4)
�

x

0
�2

+ d~x

2
o

+ �g

ab

(u) e�i! x

0+i k x

3
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vanishes at the boundary 

ingoing (regular) at the horizon

hep-th/0506184 by Kovtun & Starinets
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HJSW theory and its modes
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1409.5087 with Janik, Spalinski & Witaszczyk (see also 1104.2415 by Noronha & Denicol)

MIS/BRSSS idea:        decays exponentially to           . In holography:�⌘ �µ⌫⇡µ⌫

HJSW: go from relaxation-type eqn. to damped harmonic oscillator-type eqn. for      :⇡µ⌫

1

T
!1
QNM

��
k=0

= ±⌦R + i⌦Iwith

!4 + (. . .)!3 + (. . .)!2 + (. . .)! + (. . .) = 0

linearization
hydrodynamics 
(sound wave)

transient
(decay + oscillation)

Tested using holography     (note initialization requires not only        but also           )⇡µ⌫ @0 ⇡
µ⌫



Modes in linear response theory
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In all hydrodynamic theories and Einstein-Hilbert holography modes are single poles
of the thermal retarded two-point function of        in the Fourier space at fixed kTµ⌫

⇠ e�i!

pole

x

0+ik·x



Hydrodynamics & Transient Modes I:
Theories of Hydrodynamics & Holography

1503.07514 with Spalinski
1302.0697 with Janik & Witaszczyk

1603.05344 with Buchel & Noronha
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1
x
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Boost-invariance: in                                                                   coords no    -dep

[Bjorken 1982]

In a CFT:                                                                                     

⌧ = 0

Boost-invariant flow

⌧ > 0
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x

0const      slice:

(⌧ ⌘
q

x

2
0 � x

2
1, y ⌘ arctanh

x1

x0
, x2, x3) y

hTµ
⌫i = diag

⇢
�E(⌧),�E � ⌧ Ė , E +

1

2
⌧ Ė , E +

1

2
⌧ Ė

�

and via scale-invariance                 is a function of 

hT 2
2i � hT y

yi

w ⌘ ⌧ T

✓
E(⌧)

3
8⇡

2N2
c

◆1/4

⌘

Gradient expansion:  series in      .1

w

�P
E/3 ⌘ R

⌘

1103.3452 with Janik & Witaszczyk



Large order gradient expansion: BRSSS
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⇡µ⌫ = �⌘�µ⌫ � ⌧⇡ u
↵D↵⇡

µ⌫ + �1⇡
hµ

↵�
⌫i↵ + �2⇡

hµ
↵⌦

⌫i↵ + �3⌦
hµ

↵⌦
⌫i↵

conservation (always the same)

⇡µ⌫ = �⌘�µ⌫ � ⌧⇡ u
↵D↵⇡

µ⌫ + �1⇡
hµ

↵�
⌫i↵ + �2⇡

hµ
↵⌦

⌫i↵ + �3⌦
hµ

↵⌦
⌫i↵

⌧

w

dw

d⌧
=

2

3
+

1

18
R

(                                          )
1

4⇡
=

2� log 2

2⇡=

1

2⇡
=

R(w) ⇡
1X

n=1

rn
wn

= + . . .

Hydrodynamic gradient expansion is a divergent series: rn ⇠ n!

(note that rn’s do not depend on ini. cond.)

1503.07514 with Spalinski

⇡



Hydrodynamics & transient modes: BRSSS
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Key observations:

1X

n=1

rn
wn does not make sense without a resummation

there must be sth else that cares about ini. cond.
resurgence

Linearization of                                                                    around             gives:
1X

n=1

rn
wn

�R = � e
� 3

2
1

C⌧⇡
w
w

C⌘�2C�1
C⌧⇡

8
<

:1 +
1X

j=1

r(1)j

wj

9
=

;

integration const. (ini. cond.)

To wrap-up, we have just seen the hydro-dressed transient mode of BRSSS at k =0

further hydro dressing
(another div. series)

In equilibrium one has e�
1

C⌧⇡
T t

It is still true here, but only at a given instance: e�
1

C⌧⇡

R ⌧
⌧i

T (⌧ 0) d⌧ 0

Using T =
⇤

(⇤⌧)1/3

✓
1� C⌘

1

(⇤ ⌧)2/3
+ . . .

◆
one gets e�

3
2

1
C⌧⇡

w
w

C⌘
C⌧⇡ . . .

1503.07514 with Spalinski

see also hep-th/0606149 by Janik & Peschanski



Transseries and resurgence
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R(w) ⇡
1X

n=1

rn
wn

BR(⇠) =
1X

n=1

rn
n!

⇠n ⇡ a0 ++ . . .+ a100⇠100

b0 ++ . . .+ b100⇠100Borel trafo.

approx. analytic cont.

A =
3

2
i

✓
�i

1

C⌧⇡

◆

C1

C2

✓Z

C1

d⇠ �
Z

C2

d⇠

◆⇥
w e�w ⇠BR(⇠)

⇤

⇠ e
� 3

2
1

C⌧⇡
w
w

C⌘�2C�1
C⌧⇡ . . .

⌘
�

⌘
A

Borel (re)summation

Ambiguity in resummation
BR(⇠) = reg.+ (A� ⇠)� reg.+ . . . ~ transient mode + …

R(w) =
1X

j=0

�j e�j Aw wj � �(j)(w)Transseries:

~ resum. ambig. + ini. cond.

Resurgence: transseries yields an unambiguous answer up to 1 real int. const.

~ 1/w expansions
nonlinear effects

1503.07514 with Spalinski
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with

with

3A+

3A�
2A�

2A+
A+

A�BR(⇠) =
1X

n=1

rn
n!

⇠n ⇡ a0 ++ . . .+ a300⇠300

b0 ++ . . .+ b300⇠300

R(w) =
1X

n=1

rn
wn

+ . . .

Hydrodynamics & transient modes: HJSW

2nd order EOM        2 real int. const.        2 parameter (     ) transseries�±

1511.06358

by Aniceto & Spalinski



Hydrodynamics & transient modes: holography
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A(1)
�

2A(1)
�

3A(1)
�

3A(1)
+

2A(1)
+

A(1)
+

A(2)
+

A(2)
�

2A(2)
�

2A(2)
+

A(3)
+

A(3)
�

1302.0697 with Janik & Witaszczyk

R(w) =
1X

n=1

rn
wn

+ . . .

BR(⇠) =
1X

n=1

rn
n!

⇠n ⇡ a0 ++ . . .+ a120⇠120

b0 ++ . . .+ b120⇠120

Infinitely many transient QNMs        infinitely many parameters in the transseries



Lesson from cosmology
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with

300X

n=0

cn
n!

⇠n ⇡
P150

m=0 dm ⇠m
P150

l=0 el ⇠
l

⇠ =
H

T

singularities of Borel trafo

10 lowest transient QNM    ‘s      

dEntropy

dt
= V ⇥

 1X

n=0

cn⇠
n

!2

+ . . . for a hCFT in �dt

2 + e

2Ht
d~x

2

Hydrodynamic gradient expansion knowns about all transient QNMs

1603.05344 with Buchel & Noronha

!̂

T ⇠ e�H t e
�i⌦±

R t
ti

T (t0)dt0 ⇠ e�i⌦±·(�T (t)
H )
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Hydrodynamic gradient expansion is a divergent series hydrodynamization

 

Transient singularities of                   vs.  singularities of Borel transform of hydroG
Tµ⌫

R (!, k)

Appealing analogy with 
quantum mechanics:

non-equilibrium physics  QM with 
      gradient expansion in        perturbative series in 
transient QNMs               instanton

1

w

V = �1

2
x

2 (1�p
g x)2

g

e�1/(3g)(. . .)e� i 3
2 ⌦± w (. . .)

Emerging picture

Re(  )

Im(  )

⇠

⇠k = 0 :

nonlinearities

hydro dressingtemperature history (3/2) 
Borel vs. Fourier (-i)

1302.0697 with Janik & Witaszczyk



Resummed hydrodynamics
(Far from equilibrium hydrodynamics)

1503.07514 with Spalinski
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(BRSSS) resummed hydrodynamics1503.07514 with Spalinski

Recently Romatschke in 1704.08699 found 
such attractors in RTA kinetic theory

BRSSS:

     attractor solution („slow roll” approximation)⇡

attractor
hydro 1
hydro 2

Idea: resummed /all order / far from equilibrium hydrodynamics = attractor solutions 

One can also approx. resum transseries: 

R(w) =
1X

j=0

�j e�j Aw wj � �(j)(w)
2

⇡

Requires 3 Borel summations

Re(�) ⇡ 0.875

0.4 0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

2.5

w = T τ

R
=
P T

-
P L

P



Hydrodynamics & Transient Modes II:
RTA Kinetic Theory

1707.02282 with Florkowski & Spalinski
work in progress with Svensson

1609.04803 with Kurkela & Spalinski



RTA kinetic theory
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Natural language to talk about weakly coupled media is the Boltzmann equation:

p

µ
@µg(x, p) = C[g(x, p)] with

LO                 for gauge theories is complicated.  We will use instead

hTµ⌫i(x) =
Z

momenta

g(x, p) pµp⌫

C[g(x, p)]

withC[g(x, p)] = �p

µ
uµ

T̂

n

g(x, p)� g0(x, p)
o

g0(x, p) = e

uµpµ

T

This equation is, typically, highly nonlinear due to hTµ⌫iu⌫ = �E(T )uµ

CFTs:                  and             . pµpµ = 0

⌧rel

⌧rel =
�

T

fff

f f f f



Modes in RTA kinetic theory
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1512.02641 by Romatschke

hydro

Sound channel at k      = 0.1,  1.0  &  4.531 

Very different from holography: one hydro mode and one branch-cut at        

⌧rel

k 6= 0

single pole at ! = �i
1

⌧rel

k ! 0

transient ⇠ log

! � k +

i
⌧rel

! + k +

i
⌧rel

free particles + „RTA interactions”

1707.02282 with Florkowski & Spalinski



QNM in kinetic theory
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⇠sing =
3

2�

???�R ⇠ exp

✓
�2.25

�
± 1.3

�
i

◆

⇠
✓
⇠ � 3

2�

◆�

assuming sing. �R ⇠ exp

✓
� 3

2 �

◆
w�1.43

(. . .)

1609.04803 with Kurkela & Spalinski
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How freedom of choice of fini maps into R(w)
infinite tower of modes in BR(  )?⇠

many coincident branch pts at     ?3

2 �

e�
1
�

R ⌧
⌧0

T (⌧ 00)d⌧ 00

⌘

Seeing leading transient in dynamics

⌘

work in progress with Svensson

fini

We assume the same as in BRSSS: �R ⇠ e�Aw w�

✓
1 +O

✓
1

w

◆◆

Instead of      we take       and consider :�R

+ . . .

�R
d

dw
|�R| w

✓
d

dw
|�R|� 3

2 �

◆
⇠ A ? ⇠ � ?

w = ⌧ T

w = ⌧ T

d dw
|�

R
|

w

✓
d dw

|�
R
|�

3 2
�

◆

Baym 1984; 1305.7234 by Florkowski, Ryblewski & Strickland

0 10 20 30 40 50

-1.7

-1.6

-1.5

-1.4

-1.3

⇠

10 20 30 40 50

-2

-1

0

1

2



Executive summary

1707.02282 [hep-ph] review with Florkowski and Spalinski

1609.04803 with Kurkela & Spalinski

1103.3452 with Janik & Witaszczyk

1503.07514 with Spalinski

1302.0697 with Janik & Witaszczyk
1603.05344 with Buchel & Noronha



hydrodynamic gradient expansion diverges
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towards genericity:
2 flows and

   +      hQFTs + RTA + MIS + aHYDRO +

new connections:
resurgent series (also in QM & QFT)

new effects (???):
large contributions from           

1 1

gradient expansion as a part of transseries

linear
response

other transport? (                 )�⇣�µ⌫ r · u

related: equilibration in HICs???

HIC pheno:
hydrodynamization suggests using simple hydro models 

under extreme conditions is not completely crazy

1707.02282 [hep-ph] review with Florkowski and Spalinski


