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Why Two Colors? 
(PDG only recognises 3)

• Chance to explore systematics of 
lattice simulations at μ≠0

Good news: cutoff fixed as μ varies, 

no quantum corrections to nq=-∂f/∂μ

Bad news: UV/IR classical artifacts are 
complicated enough

• Chance to explore 
“deconfinement” in a new 

physical régime 

• No sign problem stupid! 



Why no Sign Problem for QC2D?

If ∃ KT s.t. [KT,M]=0,  then detM is real

Let K be complex conjugation, and T unitary

ie. Mψ=λψ ⇒ Mφ≡M(KTψ)=KTλψ=λ*φ so λ,λ* both in spectrum of M

Consider real eigenvalues λ≡λ* ?
2 cases labelled 

by Dyson index:

(KT)2 = -1: ⟨ψ|φ⟩=⟨ψ|KTψ⟩=⟨Tψ|TKTψ⟩
                            =⟨(KT)2ψ|KTψ⟩=-⟨ψ|φ⟩=0
⇒ degenerate real eigenvalues ⇒ detM > 0

(KT)2 = +1: ⟨ψ|φ⟩≠0
⇒ non-degenerate real eigenvalues ⇒ Sign Problem!

for N odd

β=4:

β=1:

But is it positive?



So for QC2D….
Continuum/Wilson 

fermions
Staggered fermions

(a>0)

Fundamental (2) T=Cγ5⊗τ2 T=14⊗τ2

(KT)2 +1 -1

χSB SU(2N)→Sp(2N) U(2N)→O(2N)

Adjoint (3) T=Cγ5⊗12 T=14⊗12

(KT)2 -1 +1

χSB SU(2N)→O(2N) U(2N)→Sp(2N)

Staggered fermions away from the weak-coupling continuum limit 
describe a different universality class 

Note that for (KT)2=+1 isolated real eigenvalues give a potential ergodicity 
problem, since only way to change sgn(detM) is to flow through origin

See also: 
6 of SU(4)
7 of G2

QCD with μisospin≠0



What goes wrong with the usual positive HMC measure?

detM †M

{
M describes quarks q ∈ 3
M † describes conjugate quarks qc ∈ 3̄

In general ∃ qqc gauge singlet bound states with B > 0

In QCD some qqc states degenerate with the pion

⇒ unphysical onset of “nuclear matter” at µo ≃ 1
2mπ.

Goldstone baryons: bug for QCD, feature for QC2D. . .

Calculations with the true complex measure det2M nullify
effects of qqc states for the vacuum with T = 0,
1
2mπ < µ <∼ 1

3mN by cancellations among configurations

with different signs/phases
The Silver Blaze Problem. . .

. – p.11/31
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This has been numerically verified, eg. in TSMB
simulations of Two Color QCD with N = 1 adjoint
staggered quarks.

SJH,Montvay,Scorzato,Skullerud, EurPJ C22 (2001) 451

The fake transition to a superfluid phase, forbidden by the
Pauli Principle, at µoa ≃ 0.35 disappears once
configurations with detM < 0 are included with the correct
weight.

. – p.10/30

ie. β=1



QC2D - the large Nc-1 limit
QCD with gauge group SU(2) and an even Nf of fundamental quarks 

has a real positive functional measure even once μ≠0. It is the 
simplest system of dense matter with long-ranged interactions 

amenable to LGT simulation. 

Hadron multiplets contain both qq mesons and qq, qq 
(anti-)baryons. For mπ ≪mρ the μ-dependence can be 

studied using chiral effective theory.

Key result: for μ≥μo= ½mπ a baryon charge density nq>0 
develops, along with a gauge-invariant scalar isoscalar 

superfluid condensate <qq>≠0. 
For μ≳μo the system is a BEC consisting of dilute weakly-

interacting 0+ qq diquarks.



Quantitatively, for µ >∼ µo χPT predicts

⟨ψ̄ψ⟩
⟨ψ̄ψ⟩0

=
(

µo

µ

)2

; nq = 8Nff2
πµ

(
1 − µ4

o

µ4

)
;

⟨qq⟩
⟨ψ̄ψ⟩0

=

√

1 −
(

µo

µ

)4

[Kogut, Stephanov, Toublan, Verbaarschot & Zhitnitsky, Nucl.Phys.B582(2000)477]

confirmed by QC2D simulations with staggered fermions
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. – p.14/31See also Braguta et al PRD94 (2016)205147 



Thermodynamics at T = 0 from χPT

quark number density nχPT = 8Nff 2
πµ

(
1 − µ4

o
µ4

)
[KSTVZ]

pressure pχPT = −Ω
V =

∫ µ

µo
nqdµ = 4Nff 2

π

(
µ2 + µ4

o
µ2 − 2µ2

o

)

energy density εχPT = −p + µnq = 4Nff 2
π

(
µ2 − 3µ4

o
µ2 + 2µ2

o

)

conformal anomaly

(Tµµ)χPT = ε − 3p = 8Nff 2
π

(
−µ2 − 3µ4

o
µ2 + 4µ2

o

)

NB (Tµµ)χPT < 0 for µ >
√

3µo

speed of sound vχPT =
√

∂p
∂ε =

(
1−µ4

o
µ4

1+3 µ4
o

µ4

) 1
2

. – p.15/31
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By equating free energies, we naively predict a first order
deconfining transition from BEC to quark matter;

eg. for f 2
π = Nc/6π2, µd ≈ 2.3µo.

. – p.17/31



This is to be contrasted with another paradigm for cold
dense matter, namely a degenerate system of weakly
interacting (deconfined) quarks populating a Fermi sphere
up to some maximum momentum kF ≈ EF = µ

⇒ nSB =
NfNc

3π2
µ3; εSB = 3pSB =

NfNc

4π2
µ4;

δSB = 0; vSB =
1√
3

Superfluidity arises from condensation of diquark Cooper
pairs from within a layer of thickness ∆ centred on the
Fermi surface:

⇒ ⟨qq⟩ ∝ ∆µ2

. – p.16/31



Simulation Details (Nf =2 Wilson flavors)
SJH, S. Kim & J.I Skullerud, EPJC48 (2006) 193; PRD81 (2010) 091502(R)

To counter IR fluctuations and maintain HMC ergodocity, 
we introduce a diquark source term

dp

dr
= −

(p + ε(p))(M(r) + 4πr3p)

r(r − 2M)
dM

dr
= 4πr2ε(r)

∝ ⟨!t − !s⟩

⟨qq⟩

(Tµµ)g = −a
∂β

∂a

∣

∣

∣

∣

LCP

×
3β

Nc
Tr⟨!t + !s⟩;

(Tµµ)q = −a
∂κ

∂a

∣

∣

∣

∣

LCP

× κ−1(4NfNc − ⟨ψ̄ψ⟩)

jκ(ψtr
2 Cγ5τ2ψ1 − ψ̄1Cγ5τ2ψ̄

tr
2 )

1

Have results for ja=0.04 everywhere
to enable j→0 have  ja=0.02, 0.03 at selected points 

also have µ-scans on 123x16, 163x20,....,8 ⇒ T = 47,70,94,141 MeV

S. Cotter, P. Giudice, SJH & J.I Skullerud, PRD87 034507 (2013) 

a(fm) mπa mπ/mρ T(MeV)

coarse 83x16 0.229(3) 0.78(1) 0.804(10) 55(1)
medium 123x24 0.178(6) 0.645(8) 0.805(9) 47(2)

fine (new) 163x32 0.13 0.45 0.81 49

Boz, Cotter, Fister, Mehta & Skullerud,  EPJA49 (2013) 87

Machines range from u/g lab PCs to IBM BlueGene

 163x32,....,12 ⇒ T = 49,79,99,131 MeV



Computer Effort  (sans Sign Problem!)
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The number of congrad iterations required for convergence during 
HMC guidance rises with µ ⇔ accumulation of small eigenvalues of M ?

The j→0 limit resembles the chiral limit in the vacuum 
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However:

(a) the j→0 extrapolation gives large  
corrections at small μ, so plateau closer to 

non-interacting value
j≠0 promotes diquark pairing

significant correction for interacting quarks

normalised by
free lattice quarks

normalised by free 
continuum quarks

j→0

j→0

(b) the peak above onset at low T is very sensitive
 to IR artifacts (non-sphericity of Fermi surface)

T<<∆k=2π/Ls 
significant correction for free lattice quarks
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(c) UV artifacts are present at larger μ
free lattice quark correction 
more reliable here
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But:
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Conformal Anomaly           Tµµ = ε-3p

dp

dr
= −

(p + ε(p))(M(r) + 4πr3p)

r(r − 2M)
dM

dr
= 4πr2ε(r)

∝ ⟨!t − !s⟩

⟨qq⟩

(Tµµ)g = −a
∂β

∂a

∣

∣

∣

∣

LCP

×
3β

Nc
Tr⟨!t + !s⟩;

(Tµµ)q = −a
∂κ

∂a

∣

∣

∣

∣

LCP

× κ−1(4NfNc − ⟨ψ̄ψ⟩)

1

-0.2

-0.1

0

T µ
µ
a4

0 0.2 0.4 0.6 0.8 1
µa

-0.4

-0.2

0

T µ
µ
/µ

4

N
τ
=24

N
τ
=16

N
τ
=12

N
τ
= 8

quark

gluon

Quark and gluon contributions: 
 almost cancel for μ<μQ:     conformal?      

differ for μ>μQ

    Tµµ < 0  for   μ ≳ μQ     

(Tμμ)q changes sharply at μd ≈ 850MeV 

⇒ ε<3p in limit μ→∞
consistent with self-binding?Tμμ/μ4

j→0



Calculation of Energy Density

κ2
1⟨ψ̄ψ⟩1
κ2

2⟨ψ̄ψ⟩2
=

m2⟨q̄q⟩1
m1⟨q̄q⟩2

{

= 1 chirally symmetric;

< 1 χSB with m2 < m1.

⟨ψ̄ψ⟩ ∝ m

µ2

⟨qq(µ)⟩ ∝ ∆(µ)µ2

ε = − 1

V

∂Z

∂T−1

∣

∣

∣

∣

V

= − ξ

N 3
s Nτa3

saτ

〈

∂S

∂ξ

∣

∣

∣

∣
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〉
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aτ

L = − β
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[

1

γg
!s + γg!τ

]

+ψ̄

[

1 + γqκD0[µ] + κ
∑

i

Di

]

ψ

εg

T 4
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physical
anisotropy
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anisotropic  
action
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Karsch
coefficients

estimated at ξ=1, μ=T=0 
by simulating with 
γg=1±δγg, γq=1±δγq

 and assuming linear response

Levkova, Manke & Mawhinney, PRD73 (2006) 074504; R. Morrin (TCD thesis)

⇒

⇒

ξg from “sideways potential”, ξq from pion dispersion
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εq/μ4 now negative for all μ - 
no more peak! 

again, consistent with self-binding. 
(indeed ε only barely positive for smaller µ) 

Results very sensitive to values of 
Karsch coefficients  

(particularly            ) ⇒ 

systematic error O(100%)?  
j→0 limit is key!  

BUT qualitatively similar to  
bare ε found for Nf = 4
Note aNf=4 ≈ ⅓ aNf=2 

SJH, P. Kenny and J.I. Skullerud, EPJA 47 (2011) 60

quark contribution 
εq/μ4

glue contribution 
εg/μ4

Energy densities
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And Nf =4 ? SJH, P. Kenny, S. Kim & J.I. Skullerud, EPJA47 (2011) 60

Same distinct physical regimes can 
be identified but much closer to 

continuum: a=0.062(2)fm 
⇒ µQ≈1.5GeV, µd≈2.5GeV, T=133(4)MeV

Negative εq consistent with
renormalised result at Nf =2

εq

S. Hands et al.: Lattice study of dense matter with two colors and four flavors Page 5 of 7
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Fig. 5. εq/εlatt
SB vs. µ/mπ for Nf = 2, 4.

We therefore recover for QC2D with Nf = 4 the same
intriguing result found for Nf = 2 [9]; namely that for low
temperatures T ≪ µ, µD > µQ, implying that there is a
phase with the thermodynamic properties of degenerate
quark matter, but in which color is confined. The cur-
rent result is if anything stronger than that of [9] because
nq(µ) approaches the free-quark result much more closely
as a result of the smoother gauge fields. Such a phase
is reminiscent of the confined, chirally symmetric quarky-
onic phase originally discussed in the context of large-Nc

gauge theories [16]. Unfortunately our use of Wilson lat-
tice fermions, which have no chiral symmetry away from
the limit κ → κc, precludes a discussion of whether chiral
symmetry is restored for µ > µQ at present.

So far we have found a close similarity between Nf = 2
and Nf = 4. This does not carry over to the quark energy
density εq, defined here by

εq = κ

Nf
∑

i=1

〈

ψ̄i
x(γ0 − 1)eµU0xψi

x+0̂
−

ψ̄i
x(γ0 + 1)e−µU†

0x−0̂
ψi

x−0̂

〉

. (11)

Figure 5 plots εq/εlatt
SB versus µ for Nf = 2, 4. Note that a

vacuum contribution ε0
q evaluated at µ = 0 must be sub-

tracted from both interacting and free data; for Nf = 4
this correction ε0

qa
4 = 0.3724(10). Even after this additive

correction there is still a multiplicative renormalisation re-
quired by a µ-independent factor known as a Karsch coef-
ficient [17]. Non-perturbative values for Karsch coefficients
are still to be determined for QC2D, but the shapes of the
curves are in principle correct up to discretisation errors.
Figure 5 shows a big difference at low values of µ between
Nf = 2, where εq/εlatt

SB has a peak considerably larger than
that predicted by χPT [8,9], and Nf = 4, where the ra-
tio actually starts negative and rises monotonically with
µ. A negative value of εq is not forbidden a priori, but
the requirement for positivity of the total energy density
certainly constrains the contribution εg from the gluons

(see below). For µ ! µD ε
Nf=2
q /εlatt

SB ≈ 2 becomes ap-

proximately constant; ε
Nf =4
q /εlatt

SB approaches this value
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P/mS
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Nf=2

Fig. 6. The unrenormalised quark contribution to the trace
anomaly κ−1 Tr(11 − ⟨ψ̄ψ⟩) vs. µ/mπ for Nf = 2, 4.

from below, and for µ/mπ ! 1.5 the two models appear
to coincide up to the unknown Karsch correction.

A related quantity is the quark contribution to the
trace of the stress-energy tensor (Tµµ)q, given by

(Tµµ)q = a
∂κ

∂a
×

1

κ
(4NfNc − ⟨ψ̄ψ⟩). (12)

With data from only one lattice spacing, we are cur-
rently unable to estimate the beta-function; fig. 6 plots
raw values of κ−1 Tr(11 − ⟨ψ̄ψ⟩) for Nf = 2, 4, normalised
to two quark flavors for ease of comparison, and includ-
ing the necessary vacuum subtraction. Qualitatively they
have very different behavior for µ < µD, and suggest
that (Tµµ)

Nf =2
q and (Tµµ)

Nf =4
q differ even in sign in this

regime. Note that χPT predicts Tµµ > 0 for µo < µ <√
3µo [8]. Since Tµµ = ε − 3p for isotropic matter, the

negative sign of (Tµµ)
Nf =4
q is consistent with the negative

value of εq for small µ reported in the previous paragraph.
Once µ ! µD, both models exhibit a strong upward trend,
suggesting that quarks dominate Tµµ in the deconfined
phase.

Finally we present results for local gluonic observables.
In a non-Lorentz invariant system such as one with µ ̸= 0
it is helpful to define

"s =
1

3Nc

∑

i<j

⟨tr Uijx⟩; "t =
1

3Nc

∑

x

∑

i

⟨tr U0ix⟩.

(13)
We then consider in fig. 7 the difference, proportional to
the gluon energy density

εg = 3Zβ("t − "s), (14)

where Z is another as yet undetermined Karsch coefficient
(assumed unity in the figure), and in fig. 8 the average
plaquette related to the gluon component of the stress-
energy tensor via

(Tµµ)g = −a
∂β

∂a
× 3β("s + "t). (15)
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 Quark Number susceptibility χq(µ) does not show same  
T-dependence as the Polyakov loop L

The increase in χq is not associated with “deconfinement”

Qualitatively different from: 
(a) the thermal QCD phase transition
(b) strong coupling with heavy quarks
(c) analytic/numerical studies on small, cold volumes (the “attoworld”) 

SJH, J. Myers, T.J. Hollowood, JHEP 1007 (2010) 086, 1012 (2010) 057
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Consider theory on S3xS1, with (hyper)sphere radius R<<ΛQCD 
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Figure 1: Expectation value of the fermion number as a function of the quark chemical

potential for QCD on S1 × S3. N = 3, Nf = 1, m = 0, β/R = 30 (low T ). (Left): low µ.

(Right): high µ.

over the θi. Each observable is calculated an expectation value with the form

O ≡
∫

[dθ] e−SO
∫

[dθ] e−S
−−→
N=3

∫

dθ1dθ2e−SO
∫

dθ1dθ2e−S
(4.9)

where the integrals over θ3 drop out as θ3 = −θ1 − θ2 by the SU(N) condition.
These results will multiplied by factors of β and or V3 as needed to make them

dimensionless. In this paper we present results for Nf = 1 Dirac fermion flavour.

4.0.1 Fermion number N

The fermion number gives the number of quarks minus the number of antiquarks in
the volume of S3, V3 = 2π2R3. From Figure 1 a stair-case level structure is apparent.
For massless quarks, m = 0, the average number is

N =
1

β

(

∂ ln Z

∂µ

)

=
−1

βZ

∫

[dθ] e−S

(

∂S

∂µ

)

−−−→
β→∞

Nf

Z

∫

[dθ] e−S
∞

∑

l=1

N
∑

i=1

2l(l + 1)

[

eβµ

eβµ + e−iθi+β(l+1/2)/R

]

,

(4.10)

where the derivative of the action (3.5) with respect to the chemical potential brings
down a factor of nβ, leading to a geometric series which gets summed to give the
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Figure 2: Expectation values of Polyakov loops P1 and P−1 for N = 3, Nf = 1, m = 0,

β/R = 30 (low T ). (Left): low µ. (Right): high µ.
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Figure 3: P1 and P−1 as a function of µR at the first transition (Left), and the fourth

(Right). N = 3, Nf = 1, m = 0, β/R = 30 (low T ).

Figure 2 shows P1 and P−1 as a function of µR. Each spike in P1 and P−1

corresponds to a transition in N . Even though their behaviour as a function of
µR is similar, the peaks of P−1 always preceeds P1 at the start and finish of each

transition.

In Figure 3 we compare the first and fourth transitions. As µR increases the
width of the deconfined regions increases.
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Quark density rises 
stepwise as finite “shells” 
are filled with occupancy

NL = NcNf

L
∑

ℓ=1

2ℓ(ℓ + 1)

Aconst
0 = diag(eiθ1, . . . , eiθNc)

2

Polyakov line indicates 
alternating ranges of 

confinement and 
deconfinement

⇔ partially-filled shell

NL = NcNf

L
∑

ℓ=1

2ℓ(ℓ + 1)

Aconst
0 = β−1diag(θ1, . . . , θNc)

2

⇒ WCPT applicable

JHEP 1007 (2010) 086, 1012 (2010) 057 

(Tµµ)g = −a
∂β

∂a

∣

∣

∣

∣

LCP

× 3β

Nc
Tr⟨!t + !s⟩;

(Tµµ)q = −a
∂κ

∂a

∣

∣

∣

∣

LCP

× κ−1(4NfNc − ⟨ψ̄ψ⟩)

jκ(ψtr
2 Cγ5τ2ψ1 − ψ̄1Cγ5τ2ψ̄

tr
2 )

nI(µ) ∝ exp
[

−Nfρ
2
Iµ

2
]

∝ exp

[

−const

µ2

]

S(θ) =
∑∞

n=1

1

n

(

1 −
∞

∑

ℓ=1

2ℓ(ℓ + 1)e−nβ(ℓ+1)/R

)

×
∑Nc

ij=1 cos(n(θi − θj))

+Nf
∑∞

n=1

(−)n

n

∞
∑

ℓ=1

2ℓ(ℓ + 1)e−nβ
√

(ℓ+1
2)2+m2R2/R

×
∑Nc

i=1 2 cosh(nβµ + inθi)

1

(ΔμR)~RT



Insight to all orders on (S1)4  from the lattice

Qualitatively consistent, 
suggests deconfinement 

associated with 
 non-vanishing density of 
states at Fermi energy

BUT shell degeneracies not those of single particle states

So in the attoworld, deconfinement and a rise in χq are correlated 

Conjecture: at low T deconfinement requires massless excitations  
at the Fermi surface, so is inhibited by a superfluid gap Δ>0
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1.5 Results for the other temperatures

As it is evident from Fig.s 7, 8 and 9 the chiral symmetry transition happens at a value
which is almost independent on the temperature around µ ≈ 0.45.
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Figure 7:

7

And chiral symmetry?....

interrogate configurations  using “naive’’ fermions with r = 0, ja = 0.04 
and κ = 8.0, 16.0, 40.0

1.3 Results with r = 0

In Fig. 3 it is plotted the chiral condensate as determined using r = 0. Note that these mea-
surements are done keeping the value of j = 0.04, i.e. the one of the original configurations;
I tried also to do the measurements with j = 0.00 but the error bars are bigger and some
instabilities appear.

The chiral condensate, as function of µ, is smoother with respect to the case with r = 1
and also the temperature dependence of the lattice 163 × 8 disappear.
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Smulations on 163xNτ=4,...,20 sketch the picture at  
higher T, intermediate μ

Boz, Cotter, Fister, Mehta & Skullerud,  EPJA49(2013)87 
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nature of the putative deconfinement transition at high
density, by computing the static quark potential in the
low-temperature region.

In contrast to quantities which may not be directly
comparable between theories, the effects of the medium
on low order Green functions in QC2D may provide a re-
liable guideline to full QCD. Quark and gluon correlation
functions are of great interest, as the theory can be fully
expressed in terms of these. Propagators play a predomi-
nant role, in particular in continuum descriptions, and in
some cases their behaviour suffices to shed light on the
critical physics of the phase diagram, e.g. the deconfine-
ment transition [16–19]. In this paper, we will study how
the gluon propagator responds to both temperature and
quark chemical potential.

In Sec. 2 we set out the details of our lattice simula-
tions, including the action, parameters and lattice volumes
used. Then, in Sec. 3 we study the superfluid to normal
and deconfinement transition by performing a tempera-
ture scan at 3 different values of the chemical potential.
The response of the static quark potential to µ is investi-
gated in Sec. 4, while in Sec. 5 results for the gluon propa-
gator are reported. Preliminary results for the gluon prop-
agator have been reported in [20,21], and for the static
quark potential in [22].

2 Simulation details

We use a standard Wilson gauge action with two flavours
of unimproved Wilson fermion, with the addition of a di-
quark source term to lift the low-lying eigenmodes and
allow a controlled study of diquark condensation effects.
Further details about the action and the simulation method
can be found in [5–7]. The results obtained will depend on
the diquark source j; in the end the j → 0 limit must be
taken to obtain ‘physical’ results.2

We use the same parameters as in [6,7], namely β =
1.9,κ = 0.168, corresponding to a lattice spacing a =
0.178(6)fm and a pion mass amπ = 0.645(8). The lightest
baryon, the scalar diquark, is degenerate with the pion in
the vacuum, and at zero temperature we therefore expect
an onset transition to a superfluid phase at m = mπ/2.
This has been corroborated in previous simulations [5–7].

In addition to the ensembles used and described in [7],
we have generated gauge configurations on 163 × Nτ lat-
tices with Nτ =4–20, in order to study in detail the ther-
mal transitions at aµ = 0.35, 0.4, 0.5 and 0.6. The details
of these ensembles are given in table 1. For most tem-
peratures, two diquark sources ja = 0.02 and 0.04 have
been used, enabling us to perform a linear extrapolation
to the j = 0 limit. In the region of the superfluid to normal
transition, where a linear extrapolation is known to be in-
valid, two additional j-values have been added to allow
for a controlled extrapolation.

2 In cases where model studies could be carried out with
j ̸= 0 one might also compare directly results for nonzero j;
however, most other studies will not contain any explicit di-
quark source term, so the j → 0 limit is crucial.
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Fig. 1. Diquark condensate ⟨qq⟩ as a function of temperature
T for chemical potential µa = 0.35, 0.4, 0.5, 0.6 (top to bot-
tom). The circles are data extrapolated to j = 0 using a linear
Ansatz for ja ≤ 0.04; the shaded circles denote the results of
a linear extrapolation using j = 0.02, 0.03 only.

3 Phase transitions

3.1 Superfluid to normal transition

Figure 1 shows the order parameter for superfluidity, the
diquark condensate

⟨qq⟩ = ⟨ψ2trCγ5τ2ψ
1 − ψ̄1Cγ5τ2ψ̄

2tr⟩ , (1)

as a function of the temperature T , for µa = 0.35, 0.4, 0.5
and 0.6. Also shown are the results of a linear extrapola-
tion to j = 0. We can clearly observe a transition from a
superfluid phase, characterised by ⟨qq⟩ ≠ 0, at low tem-
perature, to a normal phase with ⟨qq⟩ = 0 at high temper-
ature, with a transition in the region 0.08 ! Ta ! 0.12 for
all three values of µ. In order to pinpoint the transition,
we have performed simulations with 4 different j-values
in the transition region, and used 3 different functional
forms for the j → 0 extrapolation,

linear: ⟨qq⟩ = A + Bj , (2)

power law: ⟨qq⟩ = Bjα , (3)

constant + power: ⟨qq⟩ = A + Bjα . (4)

The results of these extrapolations are summarised in ta-
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Fig. 2. The renormalised Polyakov loop ⟨L⟩ as a function of
temperature T for µa = 0.35, 0.4, 0.5 and 0.6, in addition to
the µ = j = 0 results from [7]. The open symbols are results
for ja = 0.04; the shaded symbols are for ja = 0.02.

gesting that Ts(µ) rises very rapidly from zero at µ = µo

before suddenly flattening off.

3.2 Deconfinement transition

Figure 2 shows the traditional order parameter for decon-
finement, the Polyakov loop ⟨L⟩, as a function of tempera-
ture for different values of µ. The Polyakov loop has been
renormalised using the same method as described in [7,
23], by imposing the condition that L(aT = 1

4
, µ=0) = 1.

This determines the renormalisation constant ZL in the
relation between the bare Polyakov loop L0 and the renor-
malised Polyakov loop LR,

LR(T, µ) = ZNτ
L L0(

1

aNτ
, µ) . (5)

At all µ, we see a transition from a low-temperature
confined region to a high-temperature deconfined region.
In contrast to the diquark condensate, we see a clear, sys-
tematic shift in the transition region towards lower tem-
peratures as the chemical potential increases.

For all four µ-values, the Polyakov loop shows a nearly
linear rise as a function of temperature in a broad region,
suggesting that the transition is a smooth crossover rather
than a true phase transition. For this reason, it is diffi-
cult if not impossible with our present data to identify an
inflection point which we could use as a definition of a
pseudocritical deconfinement temperature. We choose in-
stead to define the crossover region as the region where
the Polyakov loop at ja = 0.04 rises approximately lin-
early with T . From Fig. 2 we see that the value of ⟨L⟩
increases as j is reduced, and at µa = 0.6 at least, the
crossover region will most likely move to smaller T in the
j → 0 limit. However, we do not have sufficient statistics
for ja = 0.02 at low T to make any quantitative statement
about this.

µa Tda Td (MeV)
0.0 0.193(20) 217(23)
0.35 0.101–0.179 113–200
0.40 0.087–0.157 97–176
0.50 0.057–0.103 64–115
0.60 0.050–0.097 56–109

Table 4. Estimates for the deconfinement crossover tempera-
ture Td from the Polyakov loop at ja = 0.04. The µ = 0 result
is taken from [7].

In the low-temperature region, an accurate determina-
tion of the renormalised Polyakov loop becomes increas-
ingly difficult because of the exponential growth of the
renormalisation factor ZNτ

L . Extending the data in fig. 2
to Ta < 0.05 (Nτ > 20) is beyond our present capabilities.

Our summary of transition temperatures taken from
the ja = 0.04 data is given in table 4.

4 Static quark potential

The potential between two static quarks (or a quark–
antiquark pair), and in particular its asymptotic behaviour
at large separations, has traditionally been taken as the
tell-tale indicator, or even definition, of confinement of
quarks [24]. A linearly rising potential has been observed
in numerous lattice simulations, and has also formed the
basis of successful phenomenological descriptions of bound
states of heavy quarks. In QCD with dynamical quarks,
the string will break at a finite distance, but at interme-
diate distances a linear rise can still be observed.

At high temperature, the potential is expected to ex-
hibit Debye screening, and this has been observed in nu-
merous calculations of the quark–antiquark free energy
using Polyakov loop correlators. However, it is not yet
clear how this quantity relates to the (complex) potential
that appears in effective theories of heavy quarkonia at
high temperature [25–28]. Very recently, the static quark
potential has also been determined from Wilson loops at
high temperature [29]; this does not show any screening
for T ! Tc.

There has also been some recent progress in determin-
ing the potential between heavy (finite mass) quarks at
zero [30] and non-zero [31] temperature. Some properties
of bound states of heavy quarks in QC2D at nonzero tem-
perature and density were reported in [32]; a potential
model description should reproduce these results. Here we
compute the static quark potential from Wilson loops for
our lowest temperature, the 123 × 24 lattices.

In fig. 3 we show the static quark potential computed
from the Wilson loop at Nτ = 24, for µa = 0.3, 0.5, 0.7, 0.9
and 1.1. We find that as we enter the superfluid region, the
potential becomes slightly flatter, but that this is reversed
as µ is increased further, leading to a strongly enhanced
string tension at µa = 0.9, which according to our analysis
of the Polyakov loop should be in the deconfined region.
This agrees with the pattern that was already observed in
[5].
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Fig. 12. Multimodal fits of the form eq. (10) for the magnetic
(top) and electric (bottom) gluon propagators at aµ = 0.5 and
aj = 0.04 on the 163 × 24 lattice. Note that the functions are
plotted versus four-momentum q on the abscissa.

in the process of computing the quark propagator, which
will give further input to these studies.

We are currently extending our study of QC2D to
smaller lattice spacings, which will enable us to perform a
controlled extrapolation to the continuum limit and clar-
ify the possible role of lattice artefacts at large µ.

This work is carried out as part of the UKQCD collaboration
and the DiRAC Facility jointly funded by STFC, the Large Fa-
cilities Capital Fund of BIS and Swansea University. We thank
the DEISA Consortium (www.deisa.eu), funded through the
EU FP7 project RI-222919, for support within the DEISA Ex-
treme Computing Initiative. The simulation code was adapted
with the help of Edinburgh Parallel Computing Centre funded
by a Software Development Grant from EPSRC. We acknowl-
edge the use of the USQCD cluster at Fermilab for part of this
work. The work has been carried out with the support of Sci-
ence Foundation Ireland grant 11-RFP.1-PHY3193. DM is sup-
ported by U.S. Department of Energy grant under contract no.
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Zero temperature results: baryon density
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Zero temperature results: diquark condensate
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Diquark Spectrum on 83 × 16
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Figure 3: Higgs and Goldstone masses as a function of µ. The two insets show results as j is varied at
fixed µa = 0.3, 0.5, 0.7. Extrapolations to j = 0 are displayed on the main graph with triangle symbols.

longer a good quantum number, and therefore meson and diquark states in principle
indistinguishable.

The diquark spectrum in the remaining spin-0 and spin-1 channels is shown in Fig. 4.
It is striking that the signal-noise ratio is much higher for some diquarks than for the
mesons, also seen in simulations with staggered fermions [4]. The two cleanest signals are
for the isoscalar 0+ and the isovector 1+. The first observation is that as a consequence
of the symmetry (3) there is a relation between the meson and diquark spectra which
holds for µ = j = 0 if disconnected diagrams are neglected:

MD(JP ) = MM(J−P ). (15)

For 0 < µ < µo, during which the physical ground state remains the vacuum, we thus
predict MD(0+) = Mπ ± 2µ, MD(1+) = Mρ ± 2µ, shown as dot-dashed lines in Fig. 4.
Indeed both diquark particle-antiparticle pairs behave as expected up to µa ≈ 0.3.
Diquark masses are not shown beyond µa = 0.25 as they become unfittable, as explained
in Sec. 3. After this both 0+ and 1+ anti-diquark states flatten off and slowly decrease
with µ. The other two isoscalar diquarks constructed from local operators, namely the
0− and 1−, are extremely heavy and hard to fit below onset, but above onset have a
sufficiently good signal for us to deduce masses comparable with Mπ(µ = 0), Mρ(µ = 0).
Although the noise in the meson sector is admittedly large, the approximate degeneracy
between meson and baryon sectors in the 0+ and 1+ channels seen in Figs. 2 and 4 is

11

Note for μ=j=0



Hadron Wavefunctions

Page 2 of 13 Eur. Phys. J. A (2015) 51: 39

Beyond the fundamental requirements of determin-
ing the thermodynamic and symmetry properties of the
ground state, it is interesting to examine the nature of
excitations. As well as offering continuity with the tra-
ditional concerns of lattice QCD at T = µ = 0, such
questions bear on transport in the baryonic medium; an-
swers to these questions in QCD would have the poten-
tial to inform, say, descriptions of neutron star spin down
(via quantitative information on shear and bulk viscosi-
ties) and cooling (via a knowledge of which if any ex-
citations remain gapless and hence capable of carrying
energy away). There has been exploratory work in sev-
eral directions. In [11] the hadron spectrum of QC2D was
calculated as a function of µ; beyond µo in the meson
sector the usual ordering mπ < mρ is reversed, confirm-
ing earlier studies [12]. Above onset the lightest states are
found in the 0+ and 1+ channels, with approximate de-
generacy found between mesons and diquarks, as might
be expected in a superfluid phase in which baryon num-
ber is no longer a good quantum number. The spectrum
of heavy QQ quarkonium states also shows a non-trivial
µ-dependence [13], possibly as a result of the formation
of Qq states in the quarkyonic regime. In a recent study
binding energies of multi-baryon “nuclei” formed from 0+

and 1+ bound states have been estimated [14].
On a different tack, quark and gluon propagators have

been calculated as functions of T and µ in gauge-fixed con-
figurations [6,7,15]. The electric (longitudinal) gluon prop-
agator in Landau gauge becomes strongly Debye-screened
with increasing T and µ, whereas the magnetic (trans-
verse) gluon shows little sensitivity to T , and exhibits a
mild enhancement in the quarkyonic regime before becom-
ing suppressed at large µ. Finally, the properties of topo-
logical excitations have been studied using a cooling proce-
dure to identify instantons [16]. An enhancement of topo-
logical susceptibility χT is seen on entering the quarkyonic
regime, which can be accommodated within the standard
perturbative description of Debye screening with the ac-
companying observation of a decrease in instanton scale
size ρ(µ) ∝ µ−2. χT does fall very steeply, however, once
⟨L⟩ > 0.

In this work we attempt to probe the interaction be-
tween quarks, and extract information on the spatial ex-
tent of hadrons, by calculating hadron correlation func-
tions in which the qq̄ or qq pair at the sink are spatially
separated by a vector r⃗ [17]. For a bound state H whose
temporal decay in Euclidean space is governed by a simple
exponential e−EHx0 , the spatial profile, determined nu-
merically as a function of r⃗, is proportional to the equal-
time Bethe-Salpeter wave function

Ψ(r⃗, τ) =

∫

d3x⃗⟨0|ψ̄(x⃗, τ)ψ(x⃗ + r⃗, τ)|H⟩. (2)

The typical wave function profile for a bound state is
Gaussian, the width giving basic information about the
size of the hadron. However, the correlators also yield in-
teresting information even in the absence of a bound state,
as explored in a study of the Z2 Gross-Neveu model with
µ ̸= 0 in 2 + 1d [18]. Above onset, the wave function is

no longer positive definite, but rather has an oscillatory
structure with spatial frequency of order kF ∼ µ. These
oscillations have a similar origin to the Friedel oscillations
observed in the density-density correlations of electrons in
metals (and thought to be responsible for the spin-glass
behaviour of certain alloys), characteristic of a sharp, well-
defined Fermi surface; the more primitive nature of the
point-split hadron correlator makes it easier to measure in
a numerical simulation, however. The observation of oscil-
latory wave functions in [18], with wavelength decreasing
systematically with µ, is one of several calculations lead-
ing to the identification of the Z2 GN model as a Fermi
liquid.

A wave function study in QC2D has the potential to
shed light on several outstanding issues in gauge theo-
ries at non-zero chemical potential, the most fundamen-
tal being whether it is indeed possible to identify a well-
defined Fermi surface, since Fermi momentum kF is not
a gauge-invariant quantity. It may also help clarify the
nature of the quarkyonic state, which roughly speaking
may be thought of as a degenerate quark system in which
only gauge-invariant excitations are permitted. Since two-
quark interactions are the most relevant at a Fermi sur-
face in the renormalisation group sense [19, 20], to what
extent lessons learned with Nc = 2 can be generalised
to QCD remains to be seen. Nonetheless in principle the
wave function should be a useful tool to chart the pas-
sage from BEC to BCS realisations of superfluidity as µ
increases, which theoretically should take place for QC2D
near enough the chiral limit. All these reasons motivate
the current, exploratory study.

2 Formulation

In this section we explore the theoretical expectations for
the wave function as a function of interquark separation r.
We begin, following [18], with the expression for the me-
son correlator Cm(x0; r⃗ ) with a local point source at the
origin, and q and q̄ separated by r⃗ at the sink. In anticipa-
tion of our later numerical results we choose the a priori
arbitrary sign of µ to yield the slowest decaying result in
the positive x0 direction in diquark channels with non-
zero baryon charge. Initially we assume free fields with
quark mass m, and work at strictly zero temperature; the
chemical potential µ can then be understood as a Fermi
energy for a system of degenerate quarks with Fermi en-
ergy EF (µ) ≡ µ =

√

k2
F + m2. The onset value at which

the ground state contains a non-zero matter density is
thus µo = m:

Cm(x0, r⃗ ) =
∑

x⃗

tr

∫

d4p

(2π)4

∫

d4q

(2π)4

×Γ
eipx

i/p − µγ0 + m
Γ

e−iqxe−iq⃗·r⃗

i/q − µγ0 + m
. (3)

The Dirac matrix Γ = , γ5 for channels JP = 0+, 0−.
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4 Numerical results

Hadron wave functions formed from interacting quarks
were calculated using QC2D ensembles generated using
the quark action (21) and (22) together with an unim-
proved Wilson gauge action for the gluons. The simula-
tion parameters were β = 1.9, κ = 0.168, corresponding
to lattice spacing a = 0.178(5) fm with scale set by as-
suming the string tension is (440MeV)2, and mass ratio
mπ/mρ = 0.807(5) [8]. Most results are obtained on a
123 × 24 lattice, corresponding to a physical temperature
T = 44(2)MeV, although for µa = 0.25 we also have re-
sults from 163 × 24 for comparison. This temperature is
sufficiently low to support the existence of an extended
range of µ in which the theory is simultaneously con-
fining (as indicated by a near-vanishing Polyakov loop)
and superfluid (as indicated by a non-vanishing conden-
sate ⟨ψT

2 (Cγ5)τ2ψ1⟩ ≠ 0 as j → 0). With these param-
eters values of µa in the range [0.0, 1.1] were explored;
the onset value µo = 1

2mπ = 0.323(3)a−1. The large
quark mass implies that the window in µ where BEC-
like behaviour occurs is at best very narrow, and so far
has not been observed. The so-called “quarkyonic” regime
where baryon density, pressure and superfluid condensate
all scale with µ according to the expectations of a sys-
tem of degenerate quarks, lies approximately in the range
µa ∈ (0.4, 0.8) [8, 9].

For |r⃗ | > 0 the point-split correlators (30) and (31) are
not gauge invariant without an insertion of path-ordered
link variables along some selection of paths joining the
two halves of the sink. To mitigate the effects of the signal
fluctuations introduced by this non-unique procedure, we
instead choose to gauge-fix the configuration and use unit

links to complete the loop. We fix a discretised Coulomb
gauge defined by

∆G(x) ≡
3

∑

i=1

[

AG
i (x) − AG

i (x − ı̂)
]

= 0, (33)

where the gauge transformation G(x) extremises the func-
tional

F [UG] = −Re Tr
∑

x

3
∑

i=1

UG
i (x), (34)

with UG
µ (x) = G(x)Uµ(x)G−1(x+µ). To achieve this, the

simplest algorithm [21] one can adopt is a local procedure
which visits one lattice site at a time and attempts to
minimize its contribution to the functional (34), which
can be written as

Floc(x̄) ∝ −ReTr
∑

µ

[

Uµ(x̄) + Uµ(x̄ − µ̂)
]

. (35)

Two observables are usually monitored during this pro-
cedure. One is the functional (34) itself, which decreases
monotonically and eventually reaches a plateau. The other
one is a measure of the first derivative of F [U ] during the
gauge-fixing process defined as

θG ≡
1

V

∑

x

Tr
[

∆G(x)(∆G)†(x)
]

, (36)

where V is the lattice volume. This quantity eventually
approaches zero when F [U ] reaches its minimum and can
be used as a stopping parameter for the procedure. Here
we chose θ ≤ 10−30.
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Finally, the absence of oscillatory behaviour in Ψ(r, τ)
at low temperature, in contrast with the weak-coupling
prediction (12) needs some consideration. One obvious de-
parture from weak-coupling behaviour is the formation of
a superfluid condensate ⟨qq⟩ ≠ 0, which for a degenerate
system should, via the BCS mechanism, induce an energy
gap ∆ ∼ ΛQC2D ∼ ⟨qq⟩/µ2 at the Fermi surface. The
presence of a gap removes the sharp momentum cutoff in
the integrals leading to the expressions (12) and (20), and
therefore also the oscillations. A gap can also be modelled
in free-field theory by the introduction of a diquark source
j ̸= 0, and the curves shown in fig. 2 strongly suggest this
explicit gap does indeed dampen the oscillations. The fact
that oscillations remain absent from the wave functions
of interacting quarks as j → 0, demonstrated in fig. 6, is
consistent with the post-onset QC2D gap being generated
dynamically. Of course, this speculation does not exclude
other explanations based on the persistence of hadronic
bound states in the confining quarkyonic medium.

This work is undertaken as part of the UKQCD Collaboration
using the STFC-funded DiRAC Facility. The computational
facilities of HPCWales were also used. The work of AA was
supported by a postgraduate scholarship from Swansea Univer-
sity. AA also acknowledges European Union Grant Agreement
number 238353 (ITN STRONGnet) and Academy of Finland
grant 1267286 for support during the completion of this work.
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Cf. Mass hierarchy
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Fig. 6. Diquark wave functions relative to D0
1 showing the j-dependence for various values of the chemical potential µ.

proximation (38), although for µa ! 0.5 the data is much
nosier for the meson than the diquark. For µ < µo the
wave function has a large width and has not yet vanished
by the lattice midpoint, which is consistent with the vol-
ume dependence of the spin-1 data seen in fig. 4.

In fig. 6 we show the consequences for the scalar di-
quark wave function of varying the diquark source j; the
data have been generated in a partially quenched approach
using an ensemble generated with ja = 0.02. It can be seen
that for µ > 0 increasing j has the effect of very slightly
shrinking the wave function. In contrast to the data for
free fermions in fig. 2, there is no sign of oscillatory be-
haviour developing in the j → 0 limit.

Figures 7 show τ = 8 wave functions for the four chan-
nels of interest as µ is varied. Comparison of the plots
enables us to order the states by spatial size at µ = 0:
0+ < 1− < 1+. The 0− data are considerably noisier. The
main common trend is the systematic decrease in the size
of all states as µ increases, so that by µa ∼ O(1) the max-
imum extent ra ∼ 3. With the exception of the noisy 0−,
there is no sign of any of the wave functions changing sign
or developing oscillatory behaviour as µ increases.

To crudely quantify the evolving spatial size, we ex-
tracted from the data the full width at half the maximum
of Ψ(r, τ), which was obtained by fitting the wave function
to a spline. In fig. 8 we then plot the resulting width σ(µ)
in each channel. The results are plotted both as a function
of µ and of 1/µ, and confirm the trends reported above,
and also highlights that post-onset σ(0−) is larger than
both 0+ and 1+ states. We note that σ(0+) > σ(1−) for
µa " 0.6, which is confirmed by close inspection of fig. 7.
For µa " 0.6, or 1/µa ! 1.5, the widths approach one an-
other making the various channels difficult to distinguish,
but the right panel of fig. 8 suggests that bound states are
increasingly dominated by a single length scale σ ∝ µ−1,
with the hierarchy σ(1−) < σ(0+) < σ(1+) < σ(0−).

5 Discussion

We have presented results from the first attempt, using or-
thodox lattice techniques, to examine the spatial structure
of gauge-invariant excitations in a baryonic medium. The
results complement a previous study [11] of the excita-
tion spectrum. We have focused on the post-onset regime
µ > µo in which baryon charge density is non-zero in the
T → 0 limit, and the ground state is a superfluid. Our re-
sults are consistent with the indistinguishability of mesons
and diquarks in a superfluid, and suggest a scale hierarchy
σ(0+) ∼ σ(1−) < σ(0−) < σ(1+), to be compared with
the mass hierarchy m(0+) < m(1+) ≪ m(1−) < m(0−)
found in [11]. As a general rule, signals obtained in diquark
channels were less noisy than those from mesons.

The scale hierarchy becomes less well-defined as µ in-
creases and the wave functions shrink; from µa ∼ 0.6 on-
wards all the channels yield wave functions of approxi-
mately equal extent. For orientation, if the string tension
is used to set the scale this corresponds to µ ≃ 670MeV,
at which point the quark density nq ≃ nSB ∼ 5 fm−3

(using (1)), or roughly 10× nuclear density [8]. Spline
fits to the profiles then yield the approximate behaviour
σ ∝ µ−1 with a different hierarchy σ(1−) < σ(0+) <
σ(1+) < σ(0−). This is consistent with the expectation
σ ∝ µ−1 which assumes that µ ∼ kF is the only relevant
scale at high density. Indeed, this is precisely the con-
tent of the free-field prediction (12). The physical picture
is that bound-state excitations are formed from quarks
close to the Fermi surface with a characteristic de Broglie
wavelength λF ∼ µ−1. The absence of appreciable finite
volume effects suggests, however, that the influence of im-
age charges is negligible, and that confinement continues
to hold. The conjunction of both properties characterises
the so-called quarkyonic regime.
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both 0+ and 1+ states. We note that σ(0+) > σ(1−) for
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For µa " 0.6, or 1/µa ! 1.5, the widths approach one an-
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increasingly dominated by a single length scale σ ∝ µ−1,
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thodox lattice techniques, to examine the spatial structure
of gauge-invariant excitations in a baryonic medium. The
results complement a previous study [11] of the excita-
tion spectrum. We have focused on the post-onset regime
µ > µo in which baryon charge density is non-zero in the
T → 0 limit, and the ground state is a superfluid. Our re-
sults are consistent with the indistinguishability of mesons
and diquarks in a superfluid, and suggest a scale hierarchy
σ(0+) ∼ σ(1−) < σ(0−) < σ(1+), to be compared with
the mass hierarchy m(0+) < m(1+) ≪ m(1−) < m(0−)
found in [11]. As a general rule, signals obtained in diquark
channels were less noisy than those from mesons.

The scale hierarchy becomes less well-defined as µ in-
creases and the wave functions shrink; from µa ∼ 0.6 on-
wards all the channels yield wave functions of approxi-
mately equal extent. For orientation, if the string tension
is used to set the scale this corresponds to µ ≃ 670MeV,
at which point the quark density nq ≃ nSB ∼ 5 fm−3

(using (1)), or roughly 10× nuclear density [8]. Spline
fits to the profiles then yield the approximate behaviour
σ ∝ µ−1 with a different hierarchy σ(1−) < σ(0+) <
σ(1+) < σ(0−). This is consistent with the expectation
σ ∝ µ−1 which assumes that µ ∼ kF is the only relevant
scale at high density. Indeed, this is precisely the con-
tent of the free-field prediction (12). The physical picture
is that bound-state excitations are formed from quarks
close to the Fermi surface with a characteristic de Broglie
wavelength λF ∼ µ−1. The absence of appreciable finite
volume effects suggests, however, that the influence of im-
age charges is negligible, and that confinement continues
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hadron sizes decrease as
density rises

Who knew?



Topological Susceptibility SJH, P. Kenny,  PLB701 (2011) 373 

Topological susceptibility shows no structure for Nf=2  
(maybe lattice too coarse?)

but appears enhanced in quarkyonic region for Nf=4

Cf. suppression in superfluid phase for Nf=8 
B. Alles, M. D’Elia & M.P. Lombardo, NPB752(2006)124

We have investigated instanton distributions and sizes using cooling
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For µo<µ<µd the mean instanton 
size ρI decreases
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Summary
★ QC2D offers an accessible theoretical laboratory  

for dense baryonic matter  

★ Despite UV & IR artifacts a robust picture is emerging.  
  For low T (at least) 3 distinct regions:

 Vacuum for μ < μo

       Confined “Quarkyonic” superfluid for μQ < μ < μd

               Deconfined phase for μ > μd(T)

★ Deconfinement is delayed by presence of superfluid gap 
and is plausibly absent as T→0

★ Not discussed today:  
quarkonia, static quark potential, quark and gluon propagators  
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