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Generic problem

+ System of fields evolving from some known initial state
(pure or mixed state)

« Evolution possibly coupled to a (large) external source

» Perform n local measurements, with no direct causal
relation between them (so that the outcome of a
measurement does not influence the others)

Correlation between these measurements?

+ In the strong field regime, can it be expressed in terms
of a classical field? Which one? How?
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+ Even if there is no causal contact at the time of the
measurements, correlations exist due to the fact that a
common evolution leads to these measurements

- For the correlation to be non-zero, the past light-cones of the
measurement events should overlap (at least pairwise)
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Introduction



MEASUREMENTS

+ Given a local observable O(x) (e.g., polynomial in the field
operator), we wish to calculate :

connected

| (in|O(x1) -+~ O(xn)|in)

2

« For all pairs of measurements, (x; —x;)° <0

« For simplicity, assume all times are equal: x§ = --- =x% =t;
(but this can easily be relaxed)
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INITIAL STATE

« The final result applies to various types of initial states :
« Vacuum: |in) =|0m) (the simplest)
+ Coherent state :

|in> = Ny exp { LX(k) aju(k)} |Oin>

+ Gaussian mixed state :

o =exp{ | BrExal, (a0}
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+ V(o) : self-interactions, e.g. %df‘

* J(x) : external source
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STRONG FIELD REGIME

+ Kinetic energy ~ interactions :

(0ud) (0% ) ~ V()
- For a ¢* theory, occurs when ¢ ~ g~ 'Q
« Can be achieved in two ways :

- Fields are already large in the initial state

- Large external source ] ~ g~ ' Q°
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POWER COUNTING

Order of a connected graph:

G~g 2gheg®™e (g])"
~——

gO

+ Usual ordering with the number of loops n,

« Result non-perturbative in the strong source |

« Likewise, non-perturbative in the initial field if strong
((Dini ~ 97] Q)
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POWER COUNTING

Example: O(x) = g?dp?(x)
(Ox) ~ 1eg’e---
(0(x)0(y)) = (0(x))(Oy))+(0(x)O(y)),

1@ ~g2@--

(0(x)0(y)O(z)) = (0(x))(0(y))(0(2))+(0(x)){O(y)O(2)). + - -~

1P ~g2@®-
+(0(x)0(y)O(2)), + -
~gt @

+ Higher-n correlations are increasingly suppressed
Expect more complicated expressions

Frangois Gelis, July 2017 8



ALREADY KNOWN : 1 AND 2-POINT FUNCTIONS [

<O(X1)>tree = 0(D(x))
(|:|—|—TTL2)(D:£-, ((D)) 0y =0

int
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<O(X1 )O(X2)> connected — J d3ud3v J % (eik'(ufv) F C.C.)
tree t s

30(®(x1)) 30(D(x2))
dDini(u)  0Diui(v)

- Expressible in terms of the retarded classical field ® and its
derivatives with respect to the initial condition. Is this true for
all n-point functions? If yes, explicit formula?
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Diagrammatic rules



GENERATING FUNCTIONAL

Encapsulate the expectation values in a generating functional :

Flz(x)] = (in| epr d*x z(x) O(x)|in)

te

- Correlations are obtained by differentiation of In F :

MIng

(O(x1) - O(xn)) = m 2=0

+ Note : F[z] contains disconnected graphs
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+ (in|---|in) expectation value
= usual Schwinger-Keldysh rules

¢ +

\/

- Addition vertex representing O(t¢,x)
- Localized on the surface x° = t;
+ As many legs as fields in O
+ Coupling “constant” : z(x)
- No need to specify if fields are on the + or — branch
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FIRST DERIVATIVE OF In F[z]

To all orders (diagram for O ~ ¢*):

dInTF Z all connected vacuum graphs
dz(x) with a O-vertex pulled out at x
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RETARDED-ADVANCED REPRESENTATION

* Introduce half-sum and difference of the fields:

¢251j(¢++¢7)» b1=br — b

* Propagators :

Gy = G%.—GY_ (retarded)
GY, = G%, —G°, (advanced)
Gy, = % [Gi, + GQJ

Gy = 0

- Vertices :
[1222] = —ig?, [1112] = —ig?/4, all others zero
« Observables depend only on ¢-
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Tree level



FIRST DERIVATIVE OF In F[z]

Tree level :

SInTF . each blob is a
¢, at tree level
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REPRESENTATION BY COUPLED INTEGRAL EQUATIONS

OLine (1, d2)
0d2(y)

+J a3y GY,(x,y) z(y) O/ (d2(y))

OLint (P71, d2)
0d1 (y)
aI—int(q)l»d)Z)}
0d2(y)

+L d*y 6% (%, y) 2(y) O’ (b2(y)

or(x) = ijd“y G9, (%, y)

b200 = i[a'y {30ny

+G32 (%, y)

° LiIlt(q)] ) CbZ) = Lint(d)z + %Cb]) - Lint(cbz — 12(1)1)
+ Contains z to all orders due to non-linearities
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REPRESENTATION BY EOM + BOUNDARY CONDITIONS

Equations of motion (for ¢* interaction + source) :

2

(o]

b7 =0

[DX +m? 4 9§¢§] b1 +

«a &
o —

2
(O +m2) 02 + % 03 + % 072 =]

B

z(x) enters only in the boundary conditions :

« Atte: di(te,x) =0, dodi(te,x) =iz(x) O (dp2(ts,x))
» At t;, relation between the Fourier modes :

~ 1~ o 1 ~(—
oy ) =—38" ), & (K)=5dy (K

(here, written for an empty initial state)
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Expansion in z



SETUP

Write ¢; ;> as formal series in z :

(0)

Sl SO J«Px] 2061) 6 (%1

+ zl!Jd3"‘ &x 2(x1)z(x2) 62 (x%1,%2)
+ PR
nlpd) = i) o de*m 2(61) 6 (51

1
= J d3x1d3%2 z(x1)2(x2) &5 (5x1,%2)
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ORDER O (1-POINT FUNCTION)

Simply set z = 0 in the boundary conditions :

oV (tnx) =0, 30 (tpx)=0 = wx, ¢! Vx) =0

(0)
2 =@
O+m?) 0 =L/

int

(@), @yi=0 att;

- $\% is zero everywhere

. ¢§°) = @ is the classical solution with (null) retarded boundary
condition. Straightforward to obtain numerically

: <O(X)>tree - O(@(X))
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ORDER O (1-POINT FUNCTION)

compact notation: @
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ORDER1 (2-POINT FUNCTION)

Equations of motion :

[D +m?— Li’{lt(d))} ol =0

[+ m2—gh ()] 68" =0

Boundary conditions :

tr: o 0V 6x1) =0, d0d!(x1) =i8(x —x1) O'(@(x1))

= 1~ ~ (= 1 ~(1—
te @) = —nd K, &) =5 d (K
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ORDER1 (2-POINT FUNCTION)

Solution :

oM xx) = Gia(x,x1) 0 (®(x1))
OV (x1) = Gazalxx1) O/ (D(x1))

(G12, G22 = propagators dressed by the background field @)

(0(x1)0(x2)),,0. = O'(@(x1)) G22(x1,%2) O'(D(x2))
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ORDER1 (2-POINT FUNCTION)

Expression in terms of mode functions :

[0+ m? = £, (@(x)] asx(x) =0

azk(x) — T
x0 —ty

1

Gaaly) = | 3 (ax(aily) +ax(an(y)

as(x) =Tex O0)|

with :
o

T = 3 Fik-y
=k L- Tye dDini(y)

i
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ORDER1 (2-POINT FUNCTION)

O'(@(x1)) Ga2(x1,%2) O'(D(x2))

= 0((x1)) “k H(TaT et TaT ) [0@x2)

®

+ Tree-level 2-point correlations are obtained from classical
fields, by differentiation w.r.t. the initial condition
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ORDER 1 (2-POINT FUNCTION)

OO

« Can one generalize the z-expansion to obtain higher
correlations? YES, but very painful combinatorics

« Is the result expressible in terms of derivatives of ® with
respect to ®;,;? NO, at 3-point and beyond
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Strong field approximation



Approximation :

P <2, i by —d_ <+

Equations of motion :

(O+m?) d2 — Ly (d2) =0 (no mixing with ¢7)
[D +m? — L{r’lt(d)z)] $1 =0 (linear, with ¢, background)

Francois Gelis, July 2017



0,(x) =0  9,0,(x) =2z(x) O’(9,(x)) t

0 =—072 o0=+9"72 i

« Intricate mixing via the boundary conditions
* ¢ is a strong field, and its non-linearities cannot be neglected

+ Admits a formal solution to all orders in z(x)

Frangois Gelis, July 2017
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All-orders solution



Solution of the EOM for ¢ :

1(x) =J B Gra (1) z(w) O'(b(w))

tr

Boundary condition at t; :

s, x) = j B Gaz(x, 1) 2(w) O/ (b2 (w))

te

- Propagators G, and G, dressed by ¢,
« Solution for ¢; valid everywhere

« Solution for ¢, valid only at t; (before non-linearities set in)
Can be used as initial condition for the nonlinear evolution
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Formal solution in the bulk:

d2(x) = exp { |, @ d>z(h»1ﬂﬁw} o (x)

i

D;ni=0

translation operator of ®@;;

« All the non-linear dynamics already encoded in ®[®;,;]

Frangois Gelis, July 2017
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Formal solution in the bulk:

d2(x) = exp { |, @ dn(my)ﬁw} o (x)

i

D;ni=0

translation operator of ®@;;

« All the non-linear dynamics already encoded in ®[®;,;]

« Also valid for O(¢5) :

0(2(x)) :exp{L &y ¢z(tv9)ao-fW} e
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Rewrite ¢, (ti,y) as follows :

da(ti,y) = ILJ' 3u z(u) O(dp2(w) { ?H{ etiky ?4{ e*iky}

2

O(b200)) = exp Ld3uz(u)0(¢z(tf,u))

X % L [ (—F+k?fk + ?7k—|__)+k } } O((D(X))

®

Implicit functional identity for O(¢>) :

O(¢2(x)) = exp {J duz(u) O(d2(trpu) ® } 0(@(x))

Dini=

Frangois Gelis, July 2017
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Diagrammatic representation :

®

A®B

O(D(tr,x1))

SInF SIn&F
52(x1) :exp{@f e 6z(u)> —

Dy =0

(Reminder : O(¢,) is the first derivative of In F)

Francois Gelis, July 2017
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COMBINATORICS OF TREES

Generating function for labeled trees :

- P. Flageolet, R. Sedgewick : Analytic Combinatorics, p 127

n
w(z) =e2"VE = w(z) = Z (n+ 11! %
n>0 :

+ Cayley's formula :

(n+1)""" = # of connected trees with n + 1 labeled nodes
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Introduce: @ = JdSuz(u)O(d)(tf,u))

Solution : sum of all trees with one labeled node

SInF
oz(x1)

= O+ @e—»®

Note : each blob is itself an infinite sum of tree Feynman diagrams

Francois Gelis, July 2017
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CORRELATION FUNCTIONS

- Differentiating with respect to z(x>) - - - z(xn) :
- selects trees with exactly n nodes
- puts labels onto the remaining nodes
» removes the symmetry factors

<O(X1) s O(Xn)> tree level = Z
SR trees with n.
labeled nodes
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CAUSAL STRUCTURE IN THE STRONG FIELD REGIME

+ Correlations entirely due to initial state fluctuations
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Other initial states



‘ |in) = Ny exp { Lx(k) aifn(k)} |Oin )

ain(P) [x) =x(P) [x)
Yl =exe { ~ | [xt0]°}
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GAUSSIAN MIXED STATE

+ Equation of motion and boundary condition at t; unchanged
+ Boundary condition at t; (fi = initial occupation number):

;00 =—(5+0) &m0, &5 00=(5+m) 6K

« Correlations have the same diagrammatic representation, with :

® — L (% T fk) [$+k?—k + $—k?+k }
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Beyond strong fields



WHEN IS ¢ < ¢, SATISFIED ?

« Highly occupied initial state :

» Coherent state

|in> = Ny exp { Lx(k) ajn(k)}

Oin)
with x(k) > 1
+ Gaussian mixed state
pu = exp { - | Bubxal, (a0}

with fi = (ePxFx —1)7" > 1
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WHEN IS ¢ < ¢, SATISFIED ?

« Empty (or lowly occupied) initial state,
and unstable classical dynamics :
» Backward evolution of ¢ :

b1(x°) ~ b1 (te) ") (L>0 : Lyapunov exponent)
- Boundary condition at t; :
b2 (t) ~ 1 (t:) ~ i () et
» Forward evolution of ¢, :

0
d)z(XO) ~ d1(ts) eu(tf*ti) eu(x —ti)

~ e—Zu(xo—ti) < 1
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WHEN IS ¢; < ¢, SATISFIED ?

Note : late time evolution

« Non-linear dynamics leads to ¢1 ~ ¢ when t — oo
 Thermalization : occupation < 1 for most modes

+ Correlations are those of a thermal system,
Remembers very little of the initial state
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BEYOND THE STRONG FIELD APPROXIMATION

s If 1 ~ ¢, there are other tree level contributions
+ Example of the 3-point function :

(O(x1) - O(X3)) 1100 = O+—s@e—20 + Oe—rDe2® + Oe—r@+—s® +E(X1 2 3)

strong field regime

+ The pedestrian z-expansion gives :
1.'92 / / i
tx123) = = 0°(@(x1))O°(@(x2))07(@(x3))
<[ aty 6406, 06, 02,916, (53, ) O(1)
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 Retarded propagator :

G, (x1,y) ~ eh(tr—y®)

te
- g4 J dyo eSu(tffy - g Su te—ti)
ty

b

(0 o 200 2 2O

-~ e*u(tf*ti) < 1
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CAUSAL STRUCTURE

 Beyond the strong field regime, correlations are also created in
the bulk (y° > t;) by the interactions
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Conclusions



* In the strong field regime :

- all correlations at tree-level depend on the retarded classical
field and its derivatives with respect to initial value

- all correlations are created by initial state fluctuations

- explicit dependence given by a formula that sums over all trees
with n labeled nodes

+ Beyond the strong field regime :

+ additional correlations created in the bulk
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Mode functions



[0+ m2 = £, (©(0)] azx(x) =0

int

atk(x) O eFikx
xY—tq

+ Basis of the linear space of small perturbations around a
classical solution
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_ a s ok *
- Define: |a) = <(1> , (q :1(7(1 a)

(a1]az) = iJ d3x [a’{ (x) a2 (x) — at (x) az(x)}

Properties :

Hermitean: (az|a;) = (ai]az)”
Constant: do(a;|az) =0

(ajx|aswr) = (2m)° 2B 8(k — k')
(a_x|a_y/) =—(2m)3 2Ex 8(k — k')

(arx|ayx) =0
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COMPLETENESS

« A generic perturbation can be decomposed as :

d3k
‘(1) = J (2325 {Y+k ’a+k) +v—x !a,k)}
with yix = (asxfa), v-x=—(a«|a)

« Equivalently :

9) = [ ez [la-)(@:x]a) ~[a ) (a ]a)]

Completeness of the mode functions :

[ ey [lad sl = la(a] = §)
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