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What are Axions?

Simple candidate for extension of SM:

add a complex scalar field φ
with symmetry breaking Mexican hat at high scale fa
couple the Goldstone mode arg(φ) as dynamic θ angle to QCD
(pseudo)Goldstone mode of the tilted potential is called axion

La =∂∗µφ∂
µφ− λ
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Strong CP Problem

Full QCD can include an effective CP breaking θ term:

LQCD =
∑

f

ψ̄f (Dµγ
µ + mf )ψf +

1
4

F a
µνF a

µν − iθ
g2

32π2 F̃ a
µνF a

µν (1)

with −π < θ ≤ π, so naturally θ ∼ O(1)

From experiments: |θ| < 10−10, unnatural→ fine-tuning?

Antrophic principle does not help: |θ| < 10−2 would be still fine
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Peccei-Quinn solution

interpret/introduce θ as a dynamical field with minimum at 0

as phase of a global U(1) symmetric scalar field φ
with spontaneous symmetry breaking potential

redefinition of the angular mode as arg(φ) := θeff

Z =

∫
DAµexp(−SQCD − iθeff · g2/32π2 · F̃ a

µνF a
µν)

Z reduced, F raised by phase cancellation unless θeff =0

one can get the mass of the axion: m2
A ∝ 〈Q2〉 ∝ χt

effective potential for φ has a tilt & a minimum for 0 = θeff = arg(φ) = 0

La =∂µφ
∗∂µφ− λ

8

(
φ∗φ− f 2

a

)2
+ χt

|φ|
fa

cos(θeff )
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Massive Modes

Two massive oscillations of φ
heavy "string" mode in magnitude; with mass ms ≈

√
λfa

light "axion" mode in phase; with mass ma ≈ √χt/fa

Given χt , cosmology gives an abundance of axions

Axions can provide substantial/total amount of dark matter

Two axion production mechanisms:
dynamics and decay of string/wall networks
misalignment (sole ingredient in the pre-inflation case)
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Topological Structures

Spontaneous symmetry
breaking + causality:

different θeff in causally
disconnected patches

⇒ Strings

with QCD potential
θeff → 0 everywhere

⇒Walls between Strings
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String/Wall Networks

string-like defects arise and form networks
→ axion radiation

when χt becomes relevant, formation of walls between strings
→ axion radiation

walls accelerate annihilation of topological defects
→ axion radiation

χt influences string dynamics, needed as input for total axion
production
only in case of a post-inflationary Peccei-Quinn symmetry breaking
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Misalignment

alignment of misaligned neighbouring patches
→ axion radiation

when χt becomes relevant, θeff "rolls" down to θ = 0
→ axion radiation

χt influences field dynamics, needed as input for total axion
production

ππ π/23π/2 0

arg(φ)

V(arg(φ))
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Evolution in the expanding universe
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Topological Charge

Integral

Q =

∫
M

d4xq(x)

over the topological charge density

q(x) =
1

4π2 εµνρσtr (Fµν(x)Fρσ(x))

discretized in finite volume onM = T4

sectors with different Q separated by infinite action barrier in
continuum
problem for ergodicity of MC algorithms with small "step" size in
field space
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Topological Susceptibility

Integral of qq correlator

χ =

∫
M

d4x〈q(0)q(x)〉

With global translation symmetry onM = T4

χ =
1

V4
〈Q2〉

measurement must sample sectors with Q 6= 0
difficult close to continuum
difficult when χV4 = 〈Q2〉 � 1

Z. Fodor Lattice QCD for axion cosmology



Motivation Wilson-flow & scale/topology Quenched study Dynamical case Summary

Choice of the action: improvement

no consensus: which action offers the most cost effective approach
our choice: tree-level O(a2)-improved Symanzik gauge action

2/4-level (stout) staggered or 2/3 (HEX) Wilson or overlap fermions

with tree-level O(a) clover improved fermions (Wilson):
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Scale settings and the static potential

raw output of lattice QCD: physical quantities in lattice unit
⇒ measure a dimensionful quantity Q (MΩ or fK )
the lattice spacing is given by a=(aQlat )/Qexp

today erros below 2% for several lattice predictions
it depends crucially on the error of the lattice spacing
need for a controlled/small error lattice spacing determination

not necessarily directly accesable for experiments e.g. potential
popular choices are:
string tension (strictly speaking doesn’t exist: string breaking)
the Sommer-scale r2

x · dV/dr = Cx
originally r0 with C0 = 1.65 or MILC choice r1 with C1=1
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String tension and Sommer scale from the potential

let us take Q = σ, the string tension

σ = lim
R→∞

dV (R)

dR

“Experimental value:”
√
σ = 465 MeV

V (R) = − lim
T→∞

1
T

ln[W (R,T )] , W (R,T ) =

Static q–q̄ potential V(r)

r2
X · dV (r)/dr = Cx we need interpolation for the derivative
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Sommer-scale, Omega mass, fπ and fK

unfortunately, the calculations of r0 & r1 are quite involved
far more complicated than fitting the masses of particles

complications are reflected in the literature
MILC: r1=0.3117(22) fm (better than 1% accuracy)
RBC/UKQCD: r1=0.3333(93)(1)(2) fm
7% difference and 2.3σ tension between them

another popular way is to use the Omega baryon mass
the experimental value of MΩ is well known
more CPU demanding & sensititve to the strange quark mass
mismatched strange quark mass leads to a mismatched scale

difficulties with fπ (chiral extrapolation) & fK (mismatched ms)

suggestion of M. Luscher: use the Wilson flow to set the scale
Z. Fodor Lattice QCD for axion cosmology
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Gauge field flow

flow equation: V̇t = Z (Vt )Vt , where Z is the staple
equivalent to a series of infinitesimal stout smearing steps

M. Luscher, JHEP 1008 (2010) 071

as a representative example E = Ga
µνGa

µν/4 is considered

above the cut-off (small t): lattice and continuum quite different
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Quenched Study

How far can we go with conventional brute force?

→ test it in the "cheap" quenched case

learn how to control all errors and apply it for full QCD
test bed to improve on the brute force strategy
roughly the same temperature scaling as for full QCD
estimate the costs for the full result
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Previous lattice studies

Alles:1996nm,Gattringer:2002mr etc. 1st gen results
Berkowitz:2015aua large volume/statistics up to 2.5Tc
Kitano:2015fla HMC up to 2Tc
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Lattice Setup

Pure SU(3)
Symanzik improved gauge action
gluonic q(x) from clover field strength tensor Fµν
update sweep: 1 heatbath + 4 overrelaxation

Parameters
0.1 Tc ≤ T ≤ 4.0 Tc

nt = 5,6,8
spatial volume fixed in physical units Lx ,y = 2/Tc

Lz = 2Lx ,y to enable subvolume analysis

Simulations on the Wuppertal-QPACE machine
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Renormalization of χ

χ(t) at finite Wilson-flow t is already renormalized [Luscher:2010iy]

sufficient to perform a continuum limit at flow time fixed in
physical units, e.g. t = w2

0
(w2

0 : flow time at which td/dt · [t2E(t)] = 0.3 [Borsanyi:2012zs])

the choice of t influences the size of the lattice artefacts

Z. Fodor Lattice QCD for axion cosmology
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Flow dependence of χ(t)

χ(t) has weak dependence on the choice of t
we choose t = w2

0 ≈ (0.176fm)2

the finer the lattice the weaker the t-dependence
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Continuum result: b=7.1(4)(2) & χ(4Tc)
1/4=17 MeV
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Quenched Lattice↔ DIGA

correct T dependence
normalization off by O(10)
fixed by comparison to lattice

how χt (T ) determines mA?
start with an mA e.g. 30µeV
mA(T=0) gives the value of fA

known: Hubble constant H(T)
fix Tosc by
3H(Tosc) = mA(Tosc)

using Tosc calculate
the amount of dark matter

if it is too much/little iterate
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Calibrated guess for dynamical with DIGA

dynamic case with DIGA

quenched calibrated
K-factor is O(10)

cosmology can be used
axionic dark matter & mA
can be determined

K-factor uncertainty
means a factor two in mA

dream: predict mA
ADMX experiment: tune it
(eventually even find it)
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About costs: quenched case

Cost of the conventional algorithm at relative error δχt

costs ∝ 1
(δχt )2χt (T )

relative cost (4Tc)/(1Tc) (our highest T was 4Tc : not enough)

from measured χt (T ) 47.1 ≈ 2× 104

from measured δχt 105 − 106

quenched χt (T = 0) calculated ∼ 20 years ago
Moores law leads to a factor of ∼ 105 in 24 years

⇒ Just possible to do (dynamical case is probably hard)

Z. Fodor Lattice QCD for axion cosmology
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About costs: dynamical QCD

Dynamic relative cost $(7Tc)/$(1Tc) (7Tc ∼ 1200MeV )

from estimated χt (T ) 77−8 ≈ 106 − 107

increasing τint with T 107 − 109

dynamic χt (T = 0) in 2010, Moore factor of ∼ 10

⇒ conventional dynamical study not possible (needs 35 years)

Z. Fodor Lattice QCD for axion cosmology
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Literature: full QCD

C.Bonati, M.d’Elia, G.Martinelli et al. JHEP 229 03, 155 (2016)
brute force fully dynamic in the continuum up to ≈ 4Tc
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Continuum ext.

Result: b ∼ 3 unexpected (DIGA etc. b ∼ 8)
for T>2 GeV is larger than DIGA by 7-8 orders of magnitude
one order of magnitude shift for the axion dark matter window

crosses quenched result at 4Tc (for quenched χ1/4
t (4Tc)=17 MeV)

⇒ further study is obviously necessary
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Consequences of the non-scaling behaviour

for large ’a’ no proper a2 scaling (e.g. due to large mπ splitting)
how do we monitor it, how to be sure being in the scaling regime?
dimensionless combinations in the a→0 limit:
Tcr0 or Tc/fK for the remnant of the chiral transition0 0.05 0.1
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Nt=4,6: inconsistent continuum limit
Nt=6,8,10: consistent continuum limit (stout-link improvement)

independently which quantity is taken one obtains the same Tc
signal: extrapolation is safe, we are in the a2 scaling regime
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FLAG review of lattice results Colangelo et al. Eur.Phys.J. C71 (2011) 1695
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Introduction to the dynamical case

Strong CP problem→ axion→ dark matter candidate
Two important inputs for axion production:
equation of state & topological susceptibility at high T
Determine topological susceptibility at high temperatures
at the physical point using fixed Q integral
Exact zero modes of the Dirac operator for Q 6= 0 are crucial
→ large discretization effects with staggered fermions
Possible solutions
1) eigenvalue reweighting
2) using chiral fermions
In the following we use
1) for the 3 flavor theory and
2) for going down to the physical point

Z. Fodor Lattice QCD for axion cosmology
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The equation of state

Effective number of degrees of freedom including all SM particles
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The challenge of computing the susceptibility

large autocorrelation of Q on fine lattices (algorithmic problem)
χ(T ) decreases strongly with temperature
→ very few Q 6= 0 configurations (physical problem)
E.g. 〈Q2〉 = 10−6 means one Q = ±1 configuration per million.
Even O(million) configurations can lead to large statistical errors
χ(T ) has large lattice artefacts
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T=0 instanton on the lattice: physical units

T=0 towards the continuum limit

m

λ
0

λ
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T=0 instanton on the lattice: lattice units

T=0 towards the continuum limit

am

aλ
0

aλ
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Goal: compute QCD topological susceptibility χ(T )

Temperature range: 0 < T < 2GeV

Physical quark masses (mu,md ,ms,mc)

Continuum limit

Using

Nf = 2 + 1 + 1, with isospin splitting correction

staggered and overlap quarks

Lattices with Nt = 8,10,12,16,20

Z. Fodor Lattice QCD for axion cosmology
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Physics to be captured

Typical instanton size 1/T

instanton at increasing temperatures

1
T

Dilute gas of small (r ≈ 1/T ) instantons remain

Zero modes in the light quark det suppress topology

⇒ χ(T ) falls sharply above Tc

Z. Fodor Lattice QCD for axion cosmology
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T>0 instanton in the continuum

instanton at increasing temperatures

1
T

m

λ0

λ

T
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Challenge #1: large cut-off effects

Small-instanton zero modes badly captured by lattice Dirac
operator

Higher Q sectors not properly suppressed

Cut-off effects much larger at higher T

Solution: identify would-be zero eigenvalues
and shift them to zero → reweighting

Z. Fodor Lattice QCD for axion cosmology
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T>0 instanton on the lattice: lattice units

instanton at increasing temperatures
with staggered fermions

aλ0

aλ

aT=
1/N t

am
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T>0 instanton on the lattice: physical units

instanton at increasing temperatures
with staggered fermions

m

λ0

λ

T
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Challenge #1: large cut-off effects

Small-instanton zero modes badly captured by lattice Dirac
operator

Higher Q sectors not properly suppressed

Cut-off effects much larger at higher T

Solution: identify would-be zero eigenvalues
and shift them to zero → reweighting
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Challenge #2: tiny χ hard to measure

No statistics for Q 6= 0 sectors (dictated by physics)

Topology change slow on fine lattices (algorithmic)

Solution:
Derivative of χ(T ) much easier to measure than χ

Measure χ(T0) at low enough T0

Using dχ/dT integrate up to T → integral method
Also suggested for the quenched case by [Frison et al ’16]

Z. Fodor Lattice QCD for axion cosmology
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Unusually large cut-off effects: Nf =2+1+1 with 4-stout
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Unusually large cut-off effects: Nf =2+1+1 with 4-stout
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Unusually large cut-off effects: Nf =2+1+1 with 4-stout
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Reason for bad scaling

Would-be zero eigenvalues too big

Weight in det is

Lattice: λ0 + mf

Instead of continuum: mf

Even if a ∝ 1/T (fix Nt , increase β)

λ0/m increases with T

Z. Fodor Lattice QCD for axion cosmology
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Reweighting

Strong cut-off effects are related to the lack of exact zero-modes.

In the continuum non-trivial sectors are suppressed by the
contribution of zero-modes to the fermion determinant,
ie. by the quark mass.

On the lattice the suppression is altered:
m→ m + λ0, where λ0 is a would be zero-mode.
Weaker suppression→ χ(T ) overestimated.

To improve 1. identify would be zero-modes
2. restore the continuum weight→ reweight

w [U] ∼ m
m + λ0
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T=300 MeV: susceptibility after reweighting
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Topology changing streams

simulation time history of the topological charge
3+1 flavor staggered simulation at T=400 MeV

cutoff effects: Nt=6 fluctuates more than Nt=12
for Nt=6 the rewighting factor is more substantial
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Reweighting

Weight in det is λ0 + mf instead of mf

Solution: identify would-be zero modes and shift them to 0

Compute topological charge Q with Wilson flow [Lüscher ’10]

Identify 4|Q| would-be zero eigenvalues λ1, λ2...λ4|Q|

Modify quark determinant by reweighting with factor

w [U] =
∏

f

4|Q|∏
n=1

(
mf

λn[U] + mf

)1/4

Approaching the continuum it is getting better w [U]→ 1

Z. Fodor Lattice QCD for axion cosmology



Motivation Wilson-flow & scale/topology Quenched study Dynamical case Summary

Distribution of the would-be zero modes

Nf = 2 + 1 + 1 staggered quarks, T = 240 MeV
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Average reweighting factors

Nf = 3 + 1 staggered quarks, T = 300 MeV
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Challenge #2: tiny χ hard to measure

No statistics for Q 6= 0 sectors (dictated by physics)

Topology change slow on fine lattices (algorithmic)

Solution:
Derivative of χ(T ) much easier to measure than χ

Measure χ(T0) at low enough T0

Using dχ/dT integrate up to T → integral method
Also suggested for the quenched case by [Frison et al ’16]
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Fixed sector integral

Instead of waiting for tunneling events,
we make simulations in fixed Q sectors. How to get

Z1/Z0 =?

First calculate derivative of log Z1/Z0:

b1(T ) ≡ d log Z1/Z0

d log T

Use fixed Nt -approach, ie. T = (aNt )
−1 is changed by β:

b1(T ) =
dβ

d log a
(
〈Sg〉1 − 〈Sg〉0

)
Z. Fodor Lattice QCD for axion cosmology
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Fixed Q integral - quenched

Fixed Q simulation: extra acc/rej step at the end of each update, as
lattice spacing decreased the acceptance gets better.
Test in quenched case: pure Wilson action upto 7 · Tc and 8× 643

χ
/T

c
4

T/Tc

[1508.06917]
DIGA

integral 8x32
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b
(T

)
8x32
8x645

6

7

8

standard method: extrapolation using a fit;
integral method;
Dilute Instanton Gas Approximation:
exponent agrees nicely, but order of magnitude difference in χ
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Fixed Q integral with fermions

At high temperatures χ(T ) ∼ T−b only Q = 0,1 contribute

b1 = − dβ
d log a

〈Sg〉1−0 −
∑

f

d log mf

d log a
mf 〈ψψf 〉1−0

Sg : small cutoff effects, huge statistics→ staggered Nf = 3
mf 〈ψψf 〉1−0: large cutoff effects→
staggered reweighting for Nf = 3, overlap for Nf = 2 + 1
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Mass integration with chiral fermions

There is an exact index theorem on the lattice for fermions which
satisfy the Ginsparg-Wilson relation

{D, γ5} = aDγ5D
lattice artifacts can be largely reduced
overlap construction with HW = γ5(1− DW ):

D = (m0 −m/2) (1 + γ5sgn (HW )) + m,
much more expensive than staggered fermions, but condensate
difference can be computed
we find that mf 〈ψψf 〉1−0 = Nf for T ≥ 300 MeV within errors
this gives the mass exponent required to integrate down to the
physical point
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Map of simulations
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How many sectors are needed?

for large temperatures (above 300 MeV & Nf =3) χt is small
for not too large volumes only q=0,1 and 2 (for Nf =2+1 even less)
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reach saturation (LTc>∼2)⇒ it is V independent

for small T one needs more sectors χt is not that small
one should control the contribution of the various sectors
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Volume dependence of χ at T=180 MeV for a→0
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Weight of different Q sectors

Ideal instanton gas (non-interacting instantons)
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Vχ small→ log(ZQ/Z0) ∝ Q Vχ large→ log(ZQ/Z0) ∝ Q2

[Azcoiti ’16]

Distribution determined by one parameter: Vχ

Measure Z1/Z0 for any volume V → full distribution→ χ
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Topological susceptibility at the physical point

very few topology changes (hard): S. Borsanyi et al. Nature 539 (2016) 69
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Comparison with other work
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Bonati et.al (1512.06746): smaller exponent
Petreczky, Schadler, Sharma (1606.03145): bosonic and
fermionic definitions, consistent results with large errors
Y. Taniguchi et al., (1611.02411) gives 7.2(0.9) and 7.3(1.7)
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Constraints on the axion mass
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Pre-inflation scenario: mA unambiguously determines the Θ0
initial condition of our Universe
Post-inflation: Θ0 average equivalent to Θ ≈ 2.15
absolute lower limit (all DM from misalignment): mA>∼28(2) µeV
assuming 50-99% other (e.g. strings): mA = 50− 1500 µeV
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Summary: results

Axion: a solution to a) strong CP b) dark matter problems

Calculating axion production in the early universe requires the
EoS and χ(T )

Brute force approach expensive: estimates using pure SU(3)

Both were determined using lattice calculations up to high T

Axion mass in the post-inflation scenario:
lower bound: 28(2) µeV
estimated mass range: mA = 50− 1500 µeV
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Summary: methods

Calculated T -dependence of the QCD topological susceptibility

Temperature range: 0 ≤ T ≤ 2 GeV
(follow change of χ over 10 orders of magnitude)

Physical quark masses

Continuum limit

Main lesson: keep in mind the physics of the problem

Large cut-off effects due to instanton zero-modes

At high T : tiny χ → ideal instanton gas
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