Quantum Interference in Showering: The LPM Effect and What's New

Peter Arnold

University of Virginia

Consider cartoon of

In-medium evolution of a jet

For this talk, simplify discussion by focusing on ...

Cascades that stop in-medium

- Qualitative points we'll discuss generalize.
- Formalism generalizeable as well.

Part I. Qualitative Discussion

A. interference within a single splitting: the LPM effect

B. interference between splittings (and when/if that's important)

Part II. Formalism for calculations (presented qualitatively)

Part I. Qualitative Discussion

A. interference within a single splitting: the LPM effect

Landau-Pomeranchuk-Migdal (LPM) Effect

<u>Naively</u>

brem rate ~ $n\sigma v$ ~ (density of scatterers) ×

<u>Problem</u>

At very high energy,

probabilities of brem from successive scatterings no longer independent;

brem from several successive (small angle) collisions not very different from brem from one collision.

Result: a reduction of the naive brem rate.

Example: stopping distance

If LPM effect ignored:

stopping distance $\sim E^0$ (up to logs) stopping distance $\sim E^{1/2}$ (up to logs)

Actual result (weak coupling):

Example: stopping distance

If LPM effect ignored:

stopping distance $\sim E^0$ (up to logs)

stopping distance

Actual result (weak coupling):

stopping distance $\sim E^{1/2}$ (up to logs)

And for later comparison...

QCD-like theories w/ gravity duals max (infinitely strong coupling): stopping distance $\sim E^{1/3}$

[Chesler, Jensen, Karch, Yaffe; Gubser, Gulotta, Pufu, Rocha; Hatta, Iancu, Mueller (2008)

The LPM Effect (QED)

Warm-up: Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase \rightarrow coherent.]

Now: Just Lorentz boost above picture by a lot!

Note: (1) **bigger** *E* requires bigger boost \rightarrow more time dilation \rightarrow **longer formation length** (2) big boost \rightarrow this process is **very collinear**.

An alternative picture

Are these two possibilities in phase? Or does the interference average to zero?

The important point:

The more collinear the underlying scattering, the longer the formation time.

Note: the formation length

depends on the net angular deflection during the formation length, which *depends on* the formation length

[Self-consistency \rightarrow standard parametric formulas for formation length.]

The LPM Effect (QCD)

There is a qualitative difference for *soft* bremsstrahlung.:

<u>QED</u>

QCD

Unlike a brem photon, a brem gluon can easily scatter from the medium.

Softer brem gluon \rightarrow easier for brem gluon to scatter \rightarrow less collinearity \rightarrow less LPM suppression $\nu s.$

Upshot: Soft brem more important in QCD than in QED (for high-*E* particles in a medium)

Experimental Measurement of LPM (QED)

Part I. Qualitative Discussion

A. interference within a single splitting: the LPM effect

B. interference between splittings (and when/if that's important)

An idealized Monte Carlo picture of in-medium evolution

As time passes,

roll classical dice for probability of each splitting

weighted by the quantum calculation of the single splitting rate $\frac{d\Gamma_{\text{brem}}}{dx}$ (including LPM effect) for each vertex above.

Built-in assumption:

Consecutive splittings are quantum-mechanically independent.

(But are they?)

Heuristic attempts to improve on this in real Monte Carlos: JEWEL recent versions of MARTINI

Here, I want to talk about

What's known from first-principles(-ish) QCD calculations?

Single splitting rate

Rate calculated quantitatively by

LPM for QED (1950s) BMDPS-Z for QCD (1990s)

and investigated in numerous ways by many people since.

Dependence on medium:

Units of $l_{
m form} \propto \sqrt{E}\,$ made up as

$$l_{
m form} \propto \sqrt{rac{E}{\hat{m q}}}$$

Where medium parameter \hat{q} defined by

(average net transverse) $=\hat{q}$ times distance traveled

Consecutive emissions

Chance of brem ~ α per formation time

means that two consecutive splittings will typically look like

So chance of overlap (i.e. "rolling dice separately" breaking down) is

How big is " α " ??

How big is α_s ?

Nothing to do with whether medium is

 $\underline{\alpha}_{s}$ on previous slide associated with emission vertex:

Does the wisdom of the ages tell us if α_s (few GeV) is small?

Particle physics in vacuum:

Small for some things, like matching lattice calculations to continuum MS-bar α_{s}

High-temperature physics:

Bad news (except possibly if one does sophisticated resummations of perturbation series)

Overlapping formation times effects on cascade:

Contraction of the second

 $\propto \alpha$ effect on

We should calculate it and see.

Soft emission

Soft emissions are generally enhanced by logs. Path-breaking authors found small-*x*-like double logs in this case,

$$\infty \alpha_{\rm s} \ln^2 \left(\frac{E}{\hat{q} \tau_{\rm mfp}} \right)$$

Blaizot & Mehtar-Tani; Iancu; Wu (2014)

This is a BIG effect for large *E*.

But they found soft emission effects could be absorbed into the medium parameter

 $\hat{q} \to \hat{q}_{\text{eff}}(E)$

following Liou, Mueller, Wu (2013)

Also, leading logs can be resummed to all orders! ...

$$\hat{q}_{\text{eff}}(E) = \hat{q}_0 \times \left\{ 1 + \# \alpha_{\text{s}} \ln^2 \left(\frac{E}{\hat{q}\tau_{\text{mfp}}} \right) + \# \left[\alpha_{\text{s}} \ln^2 \left(\frac{E}{\hat{q}\tau_{\text{mfp}}} \right) \right]^2 + \cdots \right\}$$
$$= \text{ something involving a Bessel fn}$$

 $\sim E^{\#\sqrt{lpha}}$ (for large enough *E*)

Effect turns out to be

stopping distance $\sim E^{\frac{1}{2}/(1+\#\sqrt{\alpha})}$ or equivalently $E^{\frac{1}{2}(1-\#\sqrt{\alpha})}$

Result for sample values of $\alpha_s(Q_1)$:

$\alpha_{\rm s} \lll 1$	stopping distance $\sim E^{rac{1}{2}}$	
$\alpha_{\rm s}=0.2$	stopping distance $\sim E^{0.35}$ or $E^{0.28}$	

Compare to ...

QCD-like theories w/ gravity duals $N_{\rm c}\alpha = \infty$	max stopping distance	2	$E^{1/3}$
---	--------------------------	---	-----------

[Aside: A personal gauge-gravity frustration]

What's the $1/(N_c\alpha)$ correction to the infinite-coupling result $E^{1/3}$?

QCD-like theories w/ gravity duals $N_{\rm c} \alpha \gg 1$	max stopping distance	~	$E^{\frac{1}{3}+???}$	
---	--------------------------	---	-----------------------	--

Back to small(ish) $\alpha_{\rm s}(Q_{\perp})$...

Soft emission corrections summary

At leading log order

- Absorbable into medium parameter $\hat{q} \rightarrow \hat{q}_{\text{eff}}(E)$
- Size of effect controlled by $\sqrt{\alpha_s}$ (after resummation)

Beyond the soft limit

What about overlap effects that *can't* be absorbed into \hat{q} ?

And how big are those effects for relevant sizes of $\alpha_{\rm s}(Q_{\perp})$?

Also, what about sub-leading logs? Are they also resummable into medium parameters?

 α_{s}

What we've done

Computed the effect of the overlap for hard emissions

In broad brush: interesting and fun field theory problem. In calculational detail: a pain in the ass.

Part I. Qualitative Discussion

A. interference within a single splitting: the LPM effect

B. interference between splittings (and when/if that's important)

Part II. Formalism for calculations (presented qualitatively) A. single splitting

B. consecutive splittings

Formalism for LPM: single brem

Shorthand henceforth: Draw

But will be even more convenient to draw as

Can (formally) interpret this as 3 particles moving forward in time [Zakharov 1990's]:

2 particles from the amplitude (evolving with e^{-iHt}) 1 particle from the conjugate amplitude (evolving with e^{+iHt}) Will show that evolution in

3-particle non-relativistic Quantum Mechanics in 2 dimensions

$$\mathcal{H}_{ ext{eff}} = rac{p_{\perp 1}^2}{2m_1} + rac{p_{\perp 2}^2}{2m_2} + rac{p_{\perp 3}^2}{2m_3} + V(b_1, b_2, b_3)$$

with weird properties:

- $m_1 + m_2 + m_3 = 0$
- $V \propto -i$ (i.e. \mathcal{H} is non-Hermitian)

 \Rightarrow interference vanishes as $\Delta t \rightarrow \infty$, as it must!

Kinetic terms:

This is 2-dimensional non-relativistic QM with

$$(m_1, m_2, m_3) = (-E, (1-x)E, xE)$$

As promised,

$$m_1 + m_2 + m_3 = 0$$

Potential terms:

Accounts for local interactions with medium. To motivate form, think of something else...

<u>A classical Boltzman analysis of scattering:</u>

$$\frac{d}{dt}f(p_{\perp}) = \int_{q_{\perp}} f(p_{\perp} - q_{\perp}) \frac{d\Gamma_{\rm el}}{dq_{\perp}} - f(p_{\perp}) \int_{q_{\perp}} \frac{d\Gamma_{\rm el}}{dq_{\perp}} \frac{d\Gamma_{\rm el}}{dq_{\perp}}$$

Fourier transform:

$$egin{aligned} rac{d}{dt} f(b) &= f(b) \left[\Gamma_{ ext{el}}(b) - \Gamma(0)
ight] \ & ext{with} & \Gamma_{ ext{el}}(b) &\equiv \int_{q_\perp} rac{d\Gamma_{ ext{el}}}{dq_\perp} \, e^{-ib\cdot q_\perp} \end{aligned}$$

This looks like a Schrodinger-ish equation:

$$irac{d}{dt}\,f={\cal H}_{
m boltz}\,f$$
 with ${\cal H}_{
m boltz}=-i\Big[\Gamma_{
m el}(0)-\Gamma_{
m el}(b)\Big]$

In our problem, this physics gives V:

QED:
$$V = -ie^2 \Big[\bar{\Gamma}(0) - \bar{\Gamma}_{el}(b_2 - b_1) \Big]$$

(bar over Γ means charge e^2 factored out)

QCD:

$$\begin{split} V &= -ig^2 \Big[\frac{1}{2} T_1^2 \, \bar{\Gamma}_{\rm el}(0) + \frac{1}{2} T_2^2 \, \bar{\Gamma}_{\rm el}(0) + \frac{1}{2} T_3^2 \, \bar{\Gamma}_{\rm el}(0) \\ &+ T_2 \cdot T_1 \, \bar{\Gamma}_{\rm el}(b_2 - b_1) + T_3 \cdot T_2 \, \bar{\Gamma}_{\rm el}(b_3 - b_2) + T_1 \cdot T_3 \, \bar{\Gamma}_{\rm el}(b_1 - b_3) \Big] \end{split}$$

Color factors $T_i \cdot T_j$ are fixed (not dynamical) because $T_1 + T_2 + T_3 = 0$ \Rightarrow e.g. $T_2 \cdot T_1 = -\frac{1}{2}(T_3^2 - T_1^2 - T_2^2) = -\frac{1}{2}(C_1 - C_2 - C_3)$

How to put the calculation together:

(1) Solve for propagation in 3-particle QM in shaded region.

(2) Tie together with QFT matrix elements for vertices

 $\propto \sqrt{\text{DGLAP splitting functions}}$

$$\propto \sqrt{P_{i
ightarrow j}(x)}$$

<u>Simplification: 3-particle QM \rightarrow 1-particle QM</u>

$$\mathcal{H}_{ ext{eff}} = rac{p_{\perp 1}^2}{2m_1} + rac{p_{\perp 2}^2}{2m_2} + rac{p_{\perp 3}^2}{2m_3} + V(b_1, b_2, b_3)$$

• Translation invariance:

Factor out COM motion \rightarrow 2-particle QM

• Results should not depend on <u>exact</u> choice of *z* axis:

[In 2-dim QM language, the last simplification depends on a special property of the case $m_1 + m_2 + m_3 = 0$.]

Solving 1-particle QM:

$$\mathcal{H}=rac{P_B^2}{2M}+V(B)$$

[BPMPS-Z (1990's)]

Method 1. Can solve numerically.

[Zakharov (2004+); Caron-Huot & Gale (2010)]

Method 2. High energies \rightarrow very collinear \rightarrow *b* 's small.

So make small *b* approximation to

$$-i \Big[\Gamma_{
m el}(0) - \Gamma_{
m el}(b) \Big] \simeq -i \hat{q} b^2 \qquad \qquad \hat{q} \equiv \int_{q_\perp} rac{d\Gamma_{
m el}}{dq_\perp} q_\perp^2$$

 \rightarrow a harmonic oscillator problem

$$\mathcal{H}=rac{P_B^2}{2M}+rac{1}{2}M\Omega_0^2B^2$$
 [Baier et al. (1998)]

(a non-Hermitian one: $\Omega_0^2 \propto -i$)

Part I. Qualitative Discussion

A. interference within a single splitting: the LPM effect

B. interference between splittings (and when/if that's important)

Part II. Formalism for calculations (presented qualitatively)

A. single splitting

B. consecutive splittings

Formalism for LPM: <u>double</u> brem

Example of an interference contribution:

Simplify: Using symmetries, as before.

effectively effectively 1-particle 1-particle OM OM

ugliest bit = 2-particle QM evolution

Can imagine

• numerics

[have not done]

• harmonic osc. approximation [have done!]

Harmonic osc. *sounds* very straight-forward, but in fact quite complicated.

• Final Δt integral easy to do numerically.

answer =
$$\int_{0}^{\infty} d(\Delta t)$$
 complicated formula

Result:

• For 4-particle (effectively 2-particle) evolution, find eigenmodes and frequencies of

- Construct corresponding propagator for 4-particle (2-particle) evolution. [Also do the same for 3-particle (1-particle) evolution.]
- Combine with QFT matrix elements for splitting vertices.

- Analytically integrate over all vertex times except Δt :
- Analytically integrate over all vertex transverse positions.

Complications

Formalism: Getting straight the formalism for 4-particles \rightarrow effectively 2 particles.

Color: During 4-particle evolution, $T_1+T_2+T_3+T_4 = 0$ is <u>not</u> enough to fix color factors $T_i \cdot T_j$. Color dynamics is non-trivial!

<u>For now</u>: Work in large N_c limit. [Not necessary if the brems are soft.]

Helicities: Helicities of high-energy particles contract non-trivially in Must use helicity-dependent DGLAP splitting functions at vertices.

Divergences: Each time-ordered diagram diverges as $\Delta t \rightarrow 0$.

Must handle carefully (and non-trivially), even though the amplitude (blue) is just a tree diagram!

Published Work with Shahin Iqbal and Han-Chih Chang

All diagrams for overlap of two *real* gluon emissions [all for $g \rightarrow gg \rightarrow ggg$]

Results for real double brem

correction to double brem due to overlapping formation times

$$= f(x,y) \frac{C_{\rm A}^2 \alpha_{\rm s}^2}{\pi^2 x y^{3/2}} \sqrt{\frac{\hat{q}_{\rm A}}{E}}$$

$$(y < x < 1{-}x{-}y)$$

where f(x,y) varies from 1.05 to -0.90 and is shown on the right.

Qualitative Point

Effect of overlapping formation times enhances the rate except when one gluon is very soft.

Virtual diagrams: what's the holdup?

Example:

UV divergent vertex correction: renormalization of charge, etc.

But can't I look up in my favorite textbook how to compute UV part of the amplitude

Yes, but I earlier treated these particles in the approximation

$$\epsilon_p = \sqrt{p_z^2 + p_\perp^2} \simeq p_z + \frac{p_\perp^2}{2p_z}$$
 2-dim QM with "mass" p_z

So I need to <u>match</u> UV renormalization of underlying gauge theory to calculations In the effective QM theory used for

Summary

Subtle problems in the field theory description of very-high energy showering

can be reduced to problems in

2-dimensional non-relativistic non-Hermitian quantum mechanics and even

2-dimensional non-relativistic non-Hermitian harmonic oscillators!

(Just when you thought you couldn't learn anything more from the harmonic oscillator...)

Coming in the future

Are the O(α_s) corrections to physical, infrared-safe quantities characterizing shower development small (after accounting for the known running of $\hat{q}(E)$ due to soft brem)?

To wit, is the basic physical assumption behind in-medium Monte Carlo simulations on firm ground?

What was subtle about

Sequential diagrams:

A: Have to avoid double counting with Monte Carlo based on single-splitting rates:

How to account for correction from

Add a $g \rightarrow ggg$ Monte Carlo possibility to account for correction:

RESERVE

Landau-Pomeranchuk-Migdal (LPM) effect

What is the LPM Effect?

A coherence effect that complicates calculations of bremsstrahlung or pair production when a very high energy particle scatters from a medium.

Places it comes up in QED

- Very high energy cosmic rays showering in the atmosphere.
- Certain beam dump experiments designed to measure the LPM effect.

Places it comes up in QCD

• Energy loss of high energy jets in a quark-gluon plasma.

2000000000000

• Complete leading-order calculations of the viscosity and other transport coefficients of a weakly-coupled quark-gluon plasma.

$$\hat{q}_{\text{eff}}(E) = \hat{q}_0 \times \left\{ 1 + \# \alpha_{\text{s}} \ln^2 \left(\frac{E}{\hat{q}\tau_{\text{mfp}}} \right) + \# \left[\alpha_{\text{s}} \ln^2 \left(\frac{E}{\hat{q}\tau_{\text{mfp}}} \right) \right]^2 + \cdots \right\}$$
$$= \hat{q}_0 \times \frac{I_1 \left(\# \left[\alpha_{\text{s}} \ln^2 \left(\frac{E}{\hat{q}\tau_{\text{mfp}}} \right) \right]^{1/2} \right)}{\# \left[\alpha_{\text{s}} \ln^2 \left(\frac{E}{\hat{q}\tau_{\text{mfp}}} \right) \right]^{1/2}} \qquad \text{[adapted from adapted from }$$

[adapted from Liou, Mueller, Wu (2013)]

Part I. Qualitative Discussion

A. interference within a single splitting: the LPM effect

B. interference between splittings (and when/if that's important)