Problem set 2 Groups and the Lorentz transformation

Problem 1: Derivation of the rotation formula

Consider a vector $\mathbf{v} = (v_x, v_y, v_z)$. A rotation by an angle θ around an axis defined by the unit vector $\hat{\mathbf{u}} = (u_x, u_y, u_z)$ transforms **v** into $\mathbf{v}' = R\mathbf{v}$ where:

$$
R(\theta, \hat{\mathbf{u}}) = I + (1 - \cos \theta) (\hat{\mathbf{u}} \cdot \mathbf{J})^2 + \sin \theta \hat{\mathbf{u}} \cdot \mathbf{J},
$$

with:

$$
\hat{\mathbf{u}} \cdot \mathbf{J} = \begin{pmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{pmatrix}.
$$

Derive the rotation formula:

$$
\mathbf{v}' = \mathbf{v} \cos \theta + (\mathbf{u} \times \mathbf{v}) \sin \theta + \mathbf{u} (\mathbf{u} \cdot \mathbf{v}) (1 - \cos \theta).
$$

This formula may also be derived directly from geometric arguments.

Problem 2: Lorentz transformation for a boost in an arbitrary direction

Consider a frame (S) with origin O and another frame (S') with origin O' moving with velocity $\mathbf{v} = v\hat{\mathbf{n}}$ relative to (S), where $\hat{\mathbf{n}}$ is a unit vector. At time $t = 0$ (as measured in frame S), the origins O and O' coincide.

The transformation matrix for a boost with velocity \bf{v} is given by:

$$
\Lambda = e^{-\zeta \cdot \mathbf{K}},
$$

where $\zeta = \zeta \hat{\mathbf{n}}$ is the boost vector and $\mathbf{K} = K_x \hat{\mathbf{x}} + K_y \hat{\mathbf{y}} + K_z \hat{\mathbf{z}}$, with $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$ being unit vectors along the x-, y- and z-axes, respectively. The K_i represent the generators of the boost:

$$
K_x = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right), \ \ K_y = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right), \ \text{and} \ \ K_z = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right).
$$

a) Show that $(\hat{\mathbf{n}} \cdot \mathbf{K})^3 = \hat{\mathbf{n}} \cdot \mathbf{K}$, and use this result to derive:

$$
\Lambda = I - \left(\sinh \zeta\right) \hat{\mathbf{n}} \cdot \mathbf{K} + \left(\cosh \zeta - 1\right) \left(\hat{\mathbf{n}} \cdot \mathbf{K}\right)^2.
$$

- b) Given that the trajectory of O' is $\mathbf{r} = \mathbf{v}t$ in frame (S) and $\mathbf{r}' = \mathbf{0}$ in frame (S'), where **r** and **r'** are the spatial position vectors, show that tanh $\zeta = \beta$, where $\beta \equiv \mathbf{v}/c$. Using this result, express Λ in terms of $\gamma = (1 - \beta^2)^{-1/2}$ and the components of β .
- c) Show that the transformation matrix Λ can also be derived by expressing a boost along an arbitrary direction $\hat{\mathbf{n}}$ as a sequence of operations: a rotation, a boost along one of the coordinate axes, followed by another rotation. [Hint: It might be useful to recall that for a rotation by an angle θ around an axis aligned with the unit vector $\hat{\mathbf{u}}$, the rotation matrix is given by $R(\theta, \hat{\mathbf{u}}) = I + (1 - \cos \theta) (\hat{\mathbf{u}} \cdot \mathbf{J})^2 + \sin \theta \hat{\mathbf{u}} \cdot \mathbf{J}$.

Problem 3: Decomposing a Lorentz transformation into boost and rotation

We consider a matrix L that belongs to SO(1,3), meaning it satisfies $L^{\dagger}gL = g$.

a) Express the inverse matrix L^{-1} in terms of the components of L, and show that:

$$
L_{00}^{2} - L_{01}^{2} - L_{02}^{2} - L_{03}^{2} = 1,
$$

\n
$$
L_{00}L_{j0} - L_{0k}L_{jk} = 0, \text{ for } j = 1, 2, 3.
$$

- b) Let O and O' denote the origins of frames (S) and (S'), respectively, and let \bf{v} represent the velocity of O' relative to frame (S). We assume that O and O' coincide at $t = 0$. By relating the coordinates of O' in frame (S) to those in frame (S'), show that $\beta_i \equiv v_i/c = -L_{0i}/L_{00}$. Then, show that $L_{00} = \gamma \equiv (1 - \beta^2)^{-1/2}$.
- c) Let $\Lambda(\beta)$ denote the transformation matrix corresponding to a boost with velocity $\mathbf{v} = \beta c$, and define the matrix $R = L\Lambda^{-1}(\beta) = L\Lambda(-\beta)$. Show that R belongs to SO(1,3). Using the expression for $\Lambda(\boldsymbol{\beta})$ in terms of γ and the components of $\boldsymbol{\beta}$ from problem 2, show that $R_{00} = 1$ and $R_{i0} = R_{0i} = 0$ for $i = 1, 2, 3$. Argue that R represents a rotation. This demonstrates that $L = R\Lambda(\beta)$, decomposing the Lorentz transformation into a boost and a spatial rotation.

Problem 4: Lorentz transformations and their expressions through SU(2)

 $SU(2)$ is the group of unitary 2×2 complex matrices with determinant 1. This means that if $M \in SU(2)$, then $M^{\dagger}M = MM^{\dagger} = I$ and $\det(M) = 1$, where M^{\dagger} is the Hermitian adjoint (complex conjugate transpose) of M.

a) Show that the group has three independent generators.

b) Let J_i , for $i = 1, 2, 3$, be three generators of SU(2). A matrix M in SU(2) can be written to first order in some small (complex) parameters z_1 , z_2 and z_3 as $M =$ $I + i z_1 J_1 + i z_2 J_2 + i z_3 J_3$. Show that the matrices $K_i = z_i J_i$ are Hermitian, meaning $K_i^{\dagger} = K_i$. Express the components of K_i in terms of real numbers, and show that M can be written as $M = I - i (a_1 \sigma_1 + a_2 \sigma_2 + a_3 \sigma_3)$, where the a_i are real numbers and the σ_i are the Pauli spin matrices, given by:

$$
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

[*Hint*: Consider first the case where $z_2 = z_3 = 0$]

- c) We now establish a connection between $SU(2)$ and $SO(1,3)$. Show that any 2×2 Hermitian complex matrix S can be expressed as $ctI + x\sigma_1 + y\sigma_2 + z\sigma_3$, where ct, x, y and z are real numbers. Calculate the determinant of S. Now, consider a 2×2 matrix L such that $\det(L) = 1$, and define the transformation $S' = LSL^{\dagger}$. Show that S' is Hermitian and can be interpreted as representing a new spacetime position vector X' , which is a Lorentz transformation of the original spacetime position vector $X = (ct, x, y, z)^{\mathsf{T}}$.
- d) We first consider the case where the transformation corresponds to a boost. Assume that L is of the form:

$$
L = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix},
$$

with a and b real, and $\det(L) = ab = 1$. Show that the transformation LSL^{\dagger} represents a boost along the z-axis. Further, demonstrate that L can be written as $L = (\cosh q) I - (\sinh q) \sigma_3$, where q is the rapidity.

e) Next, we consider the case where the transformation is a pure rotation. Under a rotation of the spatial coordinates, the time-dependent term remains unchanged, so we can focus on matrices of the form $S = x\sigma_1 + y\sigma_2 + z\sigma_3$. Show that the condition $tr(S') = tr(S) = 0$ for all x, y and z, together with $det(L) = 1$, implies that L is unitary. Hence, L can be expressed as:

$$
L = e^{-i(a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3)},
$$

where the a_i are real. Consider the case where $a_1 = a_2 = 0$ and let $a_3 = \theta$. Show that: $\overline{ }$

$$
L(0,0,\theta) = e^{-i\theta \sigma_3} = \begin{pmatrix} e^{-i\theta} & 0\\ 0 & e^{i\theta} \end{pmatrix}.
$$

Which rotation in SO(3) does the transformation LSL^{\dagger} correspond to? Is there another element of $SU(2)$ that corresponds to the same rotation in $SO(3)$?