
Problem Set 4. General Relativity, HT23

Gravitational Radiation

1a.) The Burke-Thorne Potential. Consider the following unusual Newtonian potential, due
to Burke and Thorne:

Φ =
GJ

(5)
ij

5c7
xixj

where J
(5)
ij is the traceless (energy) moment of inertia tensor, differentiated five times with

respect to time:

J
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Here, Iij = c2
∫
ρxixj dV is the standard moment of inertia tensor. The indices i and j

represent spatial Cartesian coordinates, and we use the Minkowski metric, so spatial index
placement is unimportant. The radius r2 = xixi. Show that this potential gives rise to a
force, −∂iΦ, which is exactly analogous to the “radiation reaction force” in electromagnetism.
In other words, show that we recover Einstein’s gravitational energy loss formula,
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This equation states that the work done by the force, averaged over time (this is the meaning
of the angle brackets ⟨⟩ ) equals the rate at which energy is lost from the system. This also
works for angular momentum loss as well. Show that:
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which states that the effect of “r× F” torque, averaged over time, equals the angular mo-
mentum loss.

Here are some hints:

i.) When in doubt, integrate by parts, either in time or in space. The system is assumed to
be spatially finite so that “integrals at infinity” may be ignored. Time averages over exact
time derivatives may also be neglected. (Assumes periodic or strictly bounded motion.)

ii.) The equation of mass conservation

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0

is used for the energy loss formula derivation. (You don’t have to take the time here to prove
this, though seriously, you ought to be familiar with mass conservation by now.)

iii.) You should find that for the angular momentum loss formula, the result holds either for
the traceless moment of inertia Jij or for Iij.

2.) Desert island GR. Here we will construct a linear, weak field theory gravity from scratch.
Then we will construct GR from scratch! (Well, practically.)
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Imagine that it is 1912. Minkowski has formulated the concept of his spacetime geometry
(1908), but has departed the scene. Einstein has had his happy (1907) Equivalence Principle
thought, and has at last understood that gravity is a Riemannian geometric theory of a
distorted Minkowski spacetime, and that the name of the game is to relate the derivatives
of gµν to Tµν . But he knows nothing more. Let’s help him out.

2a.) Our weak gravity field equation will need, on the left side, a sum of second derivatives
of gµν . More conveniently, we use derivatives of the small quantity hµν = gµν − ηµν . Not
only is the background spacetime geometry flat Minkowski, our coordinates are very close
to Cartesian. So, with h ≡ hρ

ρ, there are but five combinations that could possibly appear:

□hµν , ∂µ∂νh, (∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ), ηµν□h, ηµν∂ρ∂λh

ρλ

(□ ≡ ∂ρ∂ρ. We use the handy notation ∂µ = ∂/∂xµ, ∂µ = ∂/∂xµ, and raise and lower indices
on hµν with ηρµ.) Justify this statement and explain fully.

2b.) We accordingly search for an equation of the form:

□hµν + α(∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ) + β∂µ∂νh+ ηµν(γ□h+ δ∂ρ∂λh

ρλ) = CTµν

where α, β, γ, δ and C are constants to be determined. You remember, of course, the stress
tensor Tµν , now in Newtonian guise. We demand that ∂µTµν = 0 as an identity. What is the
reason for this? Show that α = −1, δ = 1, γ = −β follow:

□hµν − (∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ) + β∂µ∂νh− ηµν(β□h− ∂ρ∂λh

ρλ) = CTµν

2c.) By taking the trace of this last equation and using T00 ≫ Tii (valid in the Newtonian
limit — why?), show that

∂ρ∂λh
ρλ =

3β − 1

2
□h− CT00

2

Be careful with signs and up-down indices.

2d.) Taking the static Newtonian limit of the (2b) final equation, show that

∇2h00 +
1− β

2
∇2h =

C

2
T00

where ∇2 is the usual Laplacian operator. Explain why this implies β = 1 and C = −16πG:

□hµν − (∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ) + ∂µ∂νh− ηµν(□h− ∂ρ∂λh

ρλ) = −16πGTµν

Compare this with section (9.1) in the notes and comment.

2e.) Given that the Ricci tensor Rµν and gµνR
ρ
ρ are the only second rank tensors that are

linear in the second derivatives of the metric tensor gµν when the curvature is weak, explain
why the general field equations must take the form

Rµν −
gµνR

2
= −8πGTµν

where R ≡ Rρ
ρ. Notice: not a Bianchi identity in sight. If Einstein could only have seen this

in 1912.
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3a.) Coordinate sinuosities, the speed of gravitational radiation, and the harmonic gauge.
Recall the linear fully covariant curvature tensor:

Rλµνκ =
1

2

(
∂2hλν

∂xκ∂xµ
− ∂2hµν

∂xκ∂xλ
− ∂2hλκ

∂xµ∂xν
+

∂2hµκ

∂xν∂xλ

)
.

For a plane wave of the form hµν = Aµν exp(ikρx
ρ) travelling in vacuum, show that

Rλµνκ =
1

2
(−kκkµhλν + kκkλhµν + kµkνhλκ − kνkλhµκ)

and that the linear vacuum field equation is

kκk
ρh̄ρµ + kµk

ρh̄ρκ − k2hµκ = 0

where h̄µν = hµν − ηµνh/2 and k2 = kρkρ. We do not yet assume that k2 = 0, but shall try
to deduce this.

3b.) Show that if k2 ̸= 0 then Rλµνκ = 0. Yikes! No curvature. A mere coordinate sinuosity
propagating at the speed of thought.

3c.) Finally, show that if we consider only disturbances propagating at the speed of light,
then we must have kρh̄ρσ = 0. In other words, the harmonic gauge condition must be
satisfied. You want gravitational radiation to travel at the speed of light and to actually
produce curvature? No choice: use a harmonic gauge.

4.) Radiation from a parabolic fly by. The Peters—Mathews formula for the time-averaged
gravitational wave luminosity of a binary system in an elliptical orbit (with semi-major axis
a, masses m1 and m2, M ≡ m1 + m2, eccentricity ϵ) is given by (c is now back in the
equation):

⟨LGW ⟩ = 32

5

G4

c5
m2

1m
2
2M

a5

[
1 + (73/24)ϵ2 + (37/96)ϵ4

(1− ϵ2)7/2

]
It’s derivation is outlined in the notes (§9.6), or you may take it on perfect good faith from
your humble instructor, however startling it may seem. Using this result, show that the total
gravitational wave energy emitted by a single parabolic encounter between two bodies is

EGW =
85π

√
2

24

G7/2M1/2m2
1m

2
2

c5b7/2

where b is radius of closest approach. Recall that for a parabolic orbit, the radius r and
aximuth ϕ are related by r(1 + cosϕ) = L, where L = a(1− ϵ2) is the “semi-latus rectum,”
a constant. A parabola corresponds to the ϵ → 1 limit, with a(1− ϵ2) = L finite. You may
find the material in §6.8.1 useful.
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