# C6 - THEORETICAL PHYSICS 

# 2019 EXAM PAPER <br> SOLUTION NOTES (INFORMAL) 

Not for distribution
andrei.starinets@physics.ox.ac.uk
4. (a) State Goldstone's theorem and prove it in the context of classical scalar fields.
(b) A real scalar field has the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} \mu^{2} \phi^{2}-\lambda \phi^{4},
$$

with $\mu^{2}, \lambda>0$. What are the symmetries of this theory? Determine a vacuum solution, $\langle\phi\rangle=\phi_{0}$. Writing $\phi=\phi_{0}+\Phi$, determine the effective Lagrangian for $\Phi$ including its mass and interactions. Does the vacuum break symmetry, and are your results for the spectrum consistent with Goldstone's theorem?
(c) For scattering processes involving $\Phi$, write down the Feynman rules for vertices and propagators. For the specific process $\Phi \Phi \rightarrow \Phi \Phi$ (at tree-level), draw all relevant Feynman diagrams (you are not required to compute the scattering amplitude).
(d) We next consider a complex scalar field $\Psi$ with standard kinetic terms and potential

$$
V\left(\Psi, \Psi^{*}\right)=-\alpha\left(\Psi^{*} \Psi\right)^{3}+\beta\left(\Psi^{*} \Psi\right)^{5} .
$$

What are the dimensions of $\alpha$ and $\beta$ ? What are the symmetries of the theory? Determine a vacuum solution $\langle\Psi\rangle=\Psi_{0}$ and the masses of excitations about it. Are your results consistent with Goldstone's theorem?
(e) Denoting heavy and light real scalar fields in your spectrum as $H$ and $L$ respectively, by considering residual discrete symmetries determine the $H^{2} L, H^{3} L$ and $L^{3}$ couplings. Using these draw all tree-level diagrams contributing to $L L \rightarrow L L$ scattering.
5. (a) A real classical scalar field has the Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} .
$$

Derive the equations of motion for $\phi$, and solve them as a mode expansion in plane waves with coefficients $a(k)$. Derive expressions for the conjugate momentum $\pi(x)$ and the Hamiltonian, and evaluate the Hamiltonian explicitly in terms of $a(k)$.
(b) For a quantum scalar field, state appropriate canonical commutation relations for the mode operators $a(k)$ and $a^{\dagger}(k)$. Using these, evaluate the equal-time correlators $[\phi(x), \phi(y)]$ and $[\phi(x), \pi(y)]$, and also the 2-point function $\langle 0|\left[\phi\left(x_{A}\right), \phi\left(x_{B}\right)\right]|0\rangle$, where the events $x_{A}$ and $x_{B}$ can have arbitrary space-like separation.
(c) Now re-consider the classical scalar field of the first part, taking $m=0$, with general mode amplitudes $a(k)$ but such that the overall energy in the field is finite. Suppose that at time $t=0$ a rapid external influence causes a rescaling of the spatial dimensions $\mathbf{x} \rightarrow \lambda \mathbf{x}$, with the effect on the field $\phi$ that

$$
\phi_{\text {new }}(\mathbf{x}, t=0)=\phi_{\text {old }}\left(\frac{\mathbf{x}}{\lambda}, t=0\right) .
$$

Work out the corresponding transformation in the mode amplitudes $a(k)$. How has the energy in the field changed?
(d) Write down the quantum Hamiltonian for a free massless quantum scalar field (the derivation is not required). An adiabatic transformation takes $\mathbf{x} \rightarrow \lambda \mathbf{x}$ and $\mathbf{p} \rightarrow \frac{\mathbf{p}}{\lambda}$. How does the overall energy in the field transform? Qualitatively discuss how your results here would be modified if $m \neq 0$.
6. (a) Explain what is meant by the interaction picture and derive the Schrödinger
equation in this picture.
(b) State and prove Dyson's formula for the computation of scattering amplitudes in quantum field theory.
(c) State Wick's theorem, defining relevant quantities, and illustrate it by obtaining a formal expression for

$$
\langle 0| T\left(\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi^{3}\left(x_{4}\right)\right)|0\rangle
$$

Is this expression finite?
(d) We now consider the decays of a massive scalar field $\Phi$ with mass $m$. This field interacts with both electromagnetism and an additional scalar $a$ via the Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\text {kinetic }}+\mathcal{L}_{\text {int }}
$$

with

$$
\mathcal{L}_{\text {kinetic }}=\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi+\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \partial_{\mu} a \partial^{\mu} a
$$

and

$$
\mathcal{L}_{i n t}=\frac{1}{2} m^{2} \Phi^{2}+\frac{1}{2} m_{a}^{2} a^{2}+\frac{\lambda \Phi}{M_{P}} F_{\mu \nu} F^{\mu \nu}+g \Phi a^{2}
$$

You can assume $M_{P} \gg m_{\Phi}, g^{-1}$. By deriving estimates for the possible decay modes, plot how the $\Phi$ lifetime will depend on its mass $m_{\Phi}$, indicating how the different decay modes contribute.
with

## 0

CG 2019 Exam Part 2
Q4. Goldstone's Theorem states that breaking a global symmetry spontaneously leads to massless excitations (scalar particles) around vacuum state. The number of the excitations equals -at least - to the number of the broken symmetry generators.

For scalar fields $\varphi=\left(\varphi_{1} \ldots \varphi_{u}\right)$ var. state corresponds to

$$
\left.\frac{\partial V}{\partial \varphi}\right|_{\varphi=\varphi_{0}}=0
$$

For fluctuations around $\varphi_{0}$, $\varphi=\varphi_{0}+\delta \varphi$, we have

$$
V(\varphi)=V\left(\varphi_{0}\right)+\frac{1}{2} \frac{\partial^{2} V}{\partial \varphi_{a} \partial \varphi_{e}}\left(\varphi_{0}\right) \delta \varphi_{a} \delta \varphi_{e}
$$

Masses of excitations are determined by the eigenvalues of $\mu_{a b}=\frac{\partial^{2} V}{\partial \varphi_{a} \partial \varphi_{0}}\left(\varphi_{0}\right)$.

If $\mathcal{L}$ (and thus $V$ ) is invariant under a global symmetry group with $\delta \varphi^{a}=$ $=\varepsilon^{\alpha} T_{\alpha}^{a b} \phi_{b}$, then $\mathscr{L}(\varphi+\delta \varphi)-\mathscr{L}(\varphi)$

$$
=\delta \mathscr{L}=0 \Rightarrow \frac{\partial V}{\partial \varphi^{a}} T_{\alpha}^{a b} \phi_{b} \varepsilon^{\alpha}=0
$$

This applies also to $\varphi_{a}=\varphi_{a}^{0}+8 \varphi_{a}$ :

$$
\frac{\partial V}{\partial \varphi^{a}}\left(\varphi_{0}^{a}+8 \varphi^{a}\right) T_{\alpha}^{a b}\left(\varphi^{b}+8 \varphi^{b}\right) \varepsilon^{\alpha}=0
$$

Expanding around $\varphi_{0}{ }^{a}$ and taking into account that $\frac{\partial V}{\partial \varphi^{a}}\left(\varphi_{0}\right)=0$, we have

$$
\begin{aligned}
& \frac{\partial^{2} V}{\partial \varphi^{a}}\left(\varphi_{c}^{a}\right) \delta \varphi^{c} T_{\alpha}^{a b}\left(\varphi_{0}^{b}+\delta \varphi^{b}\right) \varepsilon^{\alpha}=0 \\
& +\cdots \\
\Rightarrow & M_{a c} \delta \varphi^{c} T_{\alpha}^{a b} \varphi_{0}^{b} \varepsilon^{\alpha}+O\left(\delta \varphi^{2}\right)=0
\end{aligned}
$$

Suppose we have $N$ generators $(\alpha=1, \cdots N)$, and for some of them $T_{\alpha}^{a} \varphi_{0}^{\theta} \neq 0$ (symmetry is spontaneously broken by vac. state). Then we should have
$M_{a c} \delta \varphi^{c}=0$, ire. Mab should have zero eigenvalue $\Rightarrow$ excitation is massless, and their number is at least equal to the number of such, broren" generators.

$$
\begin{aligned}
& (b) \mathscr{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} \mu^{2} \phi^{2}-\lambda \phi^{4} \\
& \mu^{2}, \lambda>0
\end{aligned}
$$

- Symmetries: Poincare invariance $\mathbb{Z}_{2}$ invar: $\phi \rightarrow-\phi$.
- Vacuum solution

$$
\overline{\text { E.o.m. } \quad \square \phi}+V^{\prime}(\phi)=0
$$

Also, the energy:

$$
P^{0}=\int d^{3} x T^{\infty}=\int d^{3} x\left(\frac{1}{2} \pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+V\right)
$$

where $\pi=\partial_{0} \phi$. Min energy $\Rightarrow \phi=$ cont and min of $V \Rightarrow$ var. solution is $\phi=\phi_{0}=$ cont such that $V^{\prime}(\phi)=0$.

$$
\Rightarrow \mu^{2} \phi_{0}-4 \lambda \phi_{0}^{3}=0 \Rightarrow \phi_{0}^{2}=\mu^{2} / 4 \lambda
$$

$$
V^{\prime \prime}=-\mu^{2}+12 \lambda \phi^{2} \Rightarrow \phi_{0}^{2}=\mu^{2} / 4 \lambda
$$ is a min.

$$
\phi_{0}= \pm \mu / 2 \sqrt{\lambda}
$$

Another solution, $\phi_{0}=0$, is a max.

- With $\phi=\phi_{0}+\phi$, we find the effective Lagrangian for $\phi$ :

$$
\begin{aligned}
\mathscr{I}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi & -\mu^{2} \phi^{2}-2 \sqrt{\lambda} \mu \phi^{3}-\lambda \phi^{4} \\
& +\mu^{4} / 16 \lambda
\end{aligned}
$$

Excitations $\phi$ around $\phi_{0}= \pm \mu / 2 \sqrt{\lambda}$ are massive, with $m=\sqrt{2} \mu$. Interaction terms are $\mp 2 \sqrt{\lambda} \mu \phi^{3}-\lambda \phi^{4}$.

- The vac. breaks $\mathbb{Z}_{2}$ symmetry
- This is consistent with Goldstone's theorem (we have massive excitations around vas but the broken symmetry is not a continuous symmetry).
(c) The form of interaction terms in the effective Lagrangian implies the following Feynman rules for vertices:


For the propagator we have:

$$
\frac{i}{p^{2}-m^{2}}
$$

where $M^{2}=2 \mu^{2}$.
Tree-level diagrams for $\phi \phi \rightarrow \phi \phi$ scattering are:



and

(d) $V\left(\psi, \psi^{*}\right)=-\alpha\left(\psi^{*} \psi\right)^{3}+\beta\left(\psi^{*} \psi\right)^{5}$ - In $4 d$, since the action in units
$t_{1}=1$ is dimensionless, we have

$$
\begin{aligned}
& {[\psi]=M . \text { Thus, }[\alpha]=M^{-2}} \\
& {[\beta]=M^{-6}}
\end{aligned}
$$

- Symmetries: - Poincare' symmetry
- U(I) global symmetry:
$\psi \rightarrow e^{i \alpha} \psi$, where $\alpha=$ const.
- Vacuum is determined by the condifion $V_{\psi}^{\prime}=0$ :

$$
\begin{aligned}
& -3 \alpha\left(\psi^{*} \psi\right)^{2} \psi^{*}+5 \beta\left(\psi^{*} \psi\right)^{4} \psi^{*}=0 \\
& \Rightarrow\left(\psi^{*} \psi\right)^{2}=3 \alpha / 5 \beta
\end{aligned}
$$

( $V_{\psi^{*}}^{\prime}=0$ gives the same result.) It is a circle of vacua $\psi_{0}=1 \psi_{0} / e^{i f}$, parametrised by $\delta$, with $\left|\psi_{0}\right|^{2}=\sqrt{\frac{3 \alpha}{5 \beta}}$.

Choose one of them, Pis. the one corresp. $\delta=0$, and consider small fluctuations around it: $\left.\psi=\left|\psi_{0}\right|+X+i\right)$
Expanding $V$ to quadratic order in $X, Y$, we find the terms

$$
\frac{36 \alpha^{2}}{5 \beta} X^{2}+0
$$

$\Rightarrow$ we have one massive scalar with $m_{x}^{2}=\frac{72 \alpha^{2}}{5 \beta}$ and one massless scalar. Since U(1) symmetry is spontaneously broken by the vac. solution (there is one, broken' generator), we indeed expect one massless excitation by Goldstone's theorem.
(e) We now redefine $L \equiv Y$ and $H \equiv X$. The potential depends on

$$
\psi^{*} \psi=\left(\left|\psi_{0}\right|^{2}+X\right)^{2}+Y^{2} \text { and }
$$

thus has a symmetry $Y \rightarrow-Y$
$\Rightarrow$ in the expansion of $V$ in $X, Y$, terms $H^{2} L, H^{3} L, L^{3}$ must vanish.
This can also be seen explicitly. Thus, the couplings $H^{2} L, H^{3} L, L^{3}$ vanish.

- Tree-level diagrams contributing to $L L \rightarrow L L$ scattering come from $Y^{2} X$ and $Y^{4}$ terms:



and


Q5. Classical real scalar field:

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2} \\
& \cdot \varepsilon-L \text { eqs: } \partial_{\mu}\left[\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi\right)}\right]=\frac{\partial \mathscr{L}}{\partial \phi} \\
& \Rightarrow \partial_{\mu}\left(\partial^{\mu} \phi\right)=-m^{2} \phi \Rightarrow\left(\square+m^{2}\right) \phi=0 \\
& \Rightarrow\left(\partial_{t t}^{2}-\partial_{i}^{2}+m^{2}\right) \phi=0
\end{aligned}
$$

- Eom can be solved by using Fourier decomposition for $\phi(t, \bar{x})$ :

$$
\begin{aligned}
& \phi(t, \bar{x})=\int \frac{d^{3} k}{(2 \bar{\pi})^{3}} e^{i \bar{k} \bar{x}} \phi(t, \bar{k}) \\
& \Rightarrow \ddot{\phi}(t, \bar{k})+w_{\bar{k}}^{2} \phi(t, \bar{k})=0
\end{aligned}
$$

where $\omega_{\bar{k}}=\sqrt{|\bar{k}|^{2}+m^{2}}$.
General solution:

$$
\phi(t, \bar{k})=a_{\bar{k}}^{(1)} e^{-i \omega_{\bar{k}} t}+a_{\bar{k}}^{(2)} e^{i \omega_{\bar{k}} t}
$$

Since $\phi(t, \bar{x})$ is real, $a_{\bar{k}}^{(2)}=a_{\bar{k}}^{(1) *}$
We can write $a_{\bar{k}}^{(1)}=N_{\bar{k}} a_{\bar{k}}$,
$a_{\bar{k}}^{(2)}=N_{\bar{k}} a_{\bar{k}}^{*}$, where $N_{\bar{k}} \in \mathbb{R}$ is a normalisation constant. Then

$$
\phi(t, \bar{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} N_{\bar{k}}\left(a_{\bar{k}} e^{-i k x}+a_{\bar{k}}^{*} e^{i k x}\right)
$$

where $k x=k^{0} x^{0}-\bar{k} \bar{x}$, is a general solution to the e.o.m. A convenient choice of normalisation is $N_{\bar{k}}=1 / 2 \omega_{\bar{k}}$.

$$
\begin{aligned}
& \pi(x)=\frac{\partial \mathscr{L}}{\partial \dot{\phi}}=\dot{\phi}(t, \bar{x})= \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left(-i \omega_{\bar{k}}\right) N_{\bar{k}}\left(a_{\bar{k}} e^{-i k x}-a_{\bar{k}}^{*} e^{i k x}\right)
\end{aligned}
$$

The Hamiltonian is $H=\int d^{3} x \mathcal{H}$, where the Hamiltonian density is defined as

$$
\begin{aligned}
& H=\frac{\partial \mathcal{L}}{\partial \dot{\phi}}-\left.\mathcal{L}\right|_{\dot{\phi} \rightarrow \pi}= \\
& =\frac{1}{2} \pi^{2}+\frac{1}{2} \partial_{i} \phi \partial_{i} \phi+\frac{1}{2} m^{2} \phi^{2}
\end{aligned}
$$

One can use $\int \frac{d^{3} x}{(2 \pi)^{3}} e^{i(\bar{k}+\bar{q}) \bar{x}}=\delta^{(3)}(\bar{k}+\bar{q})$
to integrate over $\bar{x}$.
We have

$$
\begin{aligned}
& \frac{1}{2} \pi^{2}=-\frac{1}{2} \int \frac{d^{3} k}{2(2 \pi)^{3}} \int \frac{d^{3} q}{2(2 \pi)^{3}}\left(a_{k} e^{-i k x}\right. \\
& \left.-a_{\bar{k}}^{*} e^{i k x}\right)\left(a_{\bar{q}} e^{-i q x}-a_{\bar{q}}^{*} e^{i q x}\right)= \\
& =-\frac{1}{8} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{d^{3} q}{(2 \pi)^{3}}\left[a_{k} a_{\bar{q}} e^{-i k x-i q x}-\right. \\
& \quad-a_{k} a_{\bar{q}}^{*} e^{-i k x+i q x}-a_{\bar{k}}^{*} a_{\bar{q}} e^{i k x-i q x}+ \\
& \left.\quad+a_{\bar{k}}^{*} a_{\bar{q}}^{*} e^{i k x+i q x}\right] \\
& \frac{1}{2} \partial_{i} \phi \partial_{i} \phi=\frac{1}{2} \int \frac{d^{3} k}{2 \omega_{k}(2 \pi)^{3}} \int \frac{d^{3} q}{2 \omega_{q}(2 i)^{3}} \times \\
& \times\left(i k_{i} a_{\bar{k}} e^{-i k x}-i k_{i} a_{\bar{k}}^{*} e^{i k x}\right) \times \\
& \times\left(i q_{i} a_{\bar{q}} e^{-i q x}-i q_{i} a_{\bar{q}}^{*} e^{i q x}\right) \\
& \frac{1}{2} m{ }^{2} \phi^{2}=\frac{m^{2}}{2} \int \frac{d^{3} k}{2 \omega_{k}(2 \pi)^{3}} \int \frac{d^{3} g}{2 \omega_{q}(2 \pi)^{3}} \times \\
& \times\left(a_{k} e^{-i k x}+a_{\bar{k}}^{*} e^{i k x}\right)\left(a_{\bar{q}} e^{-i q x}+a_{\bar{q}}^{*} e^{i q x}\right) .
\end{aligned}
$$

Combining this, we find

$$
\begin{aligned}
& \frac{1}{2} \pi^{2}+\frac{1}{2} \partial_{i} \phi \partial_{i} \phi+\frac{1}{2} m^{2} \phi^{2}= \\
& =\frac{1}{2} \int \frac{d^{3} k}{2 \omega_{k}(2 \pi)^{3}} \int \frac{d^{3} q}{2 \omega_{p}(2 \pi)^{3}}\left[\left(-\omega_{\bar{k}} \omega_{\bar{q}}-k_{i} q_{i}+m^{2}\right)\right. \\
& \times\left(a_{\bar{k}} a_{\bar{q}} e^{-i k x-i g x}+a_{\bar{k}}^{*} a_{\bar{q}}^{*} e^{i k x+i g x}\right) \\
& +\left(\omega_{\bar{k}} \omega_{\bar{q}}+k_{i} q_{i}+m^{2}\right)\left(a_{\bar{k}} a_{\bar{q}}^{*} e^{-i k x+i q x}+\right. \\
& \left.\left.+a_{\bar{k}}^{*} a_{\bar{q}} e^{i k x-i q x}\right)\right]
\end{aligned}
$$

For $H=\int d^{3} x$, integrating over $\bar{x}$ and then over $\bar{q}$, we find $\bar{q}=-\bar{k}$ in the first half of the above expression and $\bar{q}=\bar{K}$ in the second. In both cases, $\omega_{\bar{k}}=\omega_{\bar{q}}$, since they depend on $|\bar{K}|$ or $1 \overline{9} \mid$. Thus, we have $\left(-\omega_{\bar{k}}^{2}+\bar{k}^{2}+m^{2}\right)$ in the first case and $\left(\omega_{k}^{2}+\bar{k}^{2}+m^{2}\right)$ in the second.

But $\omega_{k}^{2}=\bar{k}^{2}+m^{2}$, so the first (B) bracket vanishes. We obtain

$$
H=\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{a_{\bar{k}} a_{k}^{*}+a_{k}^{*} a_{\bar{k}}}{2}
$$

Therefore, for classical fields

$$
H=\int \frac{d^{3} k}{2 \omega_{k}(2 \pi)^{3}} \omega_{\bar{k}} a_{\bar{k}}^{*} a_{\bar{k}}
$$

(b) For a quantum scalar field, we have $\left[\hat{a}_{\bar{k}}, \hat{a}_{\bar{k}^{\prime}}^{+}\right]=(2 \pi)^{3} 2 \omega_{\bar{k}} \delta^{(3)}\left(\bar{k}-\bar{k}^{\prime}\right)$,

$$
\left[\hat{a}_{\bar{k}}, \hat{a}_{\bar{k}^{\prime}}\right]=0, \quad\left[\hat{a}_{\bar{k}}^{+}, \hat{a}_{\bar{k}}^{\prime}\right]=0
$$

The quantum field is written as

$$
\phi(t, \bar{x})=\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}\left(\hat{a}_{k} e^{-i k x}+\hat{a}_{\bar{k}}^{t} e^{i k x}\right)
$$

so the equal-time commutators are

$$
\begin{aligned}
& {[\phi(t, \bar{x}), \phi(t, \bar{y})]=\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}} \int \frac{d^{3} q}{(2 \pi)^{3} 2 \omega_{q}}} \\
& \times\left(\left[\hat{a}_{k} \hat{a}_{\bar{q}}^{+}\right] e^{+i \bar{k} \bar{x}-i \bar{q} \bar{y}} e^{-i \omega_{\bar{k}} t+i \omega_{\bar{q}} t}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left[\hat{a}_{\bar{k}}^{+} \hat{a}_{\bar{q}}\right] e^{-i \bar{k} \bar{x}+i \bar{q} \bar{y}} e^{i \omega_{k} t-i \omega_{q} t}\right) \\
& =\int \frac{d^{3} k}{(2 \bar{k})^{3} 2 \omega_{\bar{k}}} \int \frac{d^{3} q}{(2 \pi)^{3} 2 \omega_{\bar{y}}}\left((2 \bar{\pi})^{3} 2 \omega_{\bar{k}} \delta^{(3)}(\bar{k}-\bar{q}) e^{\prime \prime \prime}\right. \\
& \left.-(2 \pi)^{3} 2 \omega_{\bar{k}} \delta^{(3)}(\bar{k}-\bar{q}) e^{\cdots}\right)= \\
& =\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{\bar{k}}}\left(e^{i \bar{k}(\bar{x}-\bar{y})}-e^{-i \bar{k}(\bar{x}-\bar{y})}\right)
\end{aligned}
$$

This is zero, since an odd function of $\bar{k}$ is integrated from $-\infty$ to $\infty$.
For $[\phi(t, \bar{x}), \pi(t, \bar{y})]$ commutator we find.

$$
\begin{aligned}
& {[\phi(t, \bar{x}), \pi(t, \bar{y})]=-\frac{i}{2} \int \frac{d^{3} k}{(2 \bar{i})^{3} 2 \omega_{k}} \int \frac{d^{3} q}{(2 \bar{i})^{3}}} \\
& \left(-\left[\hat{a}_{\bar{k}} a_{\bar{q}}^{1}\right] e^{i \bar{k} \bar{x}-i \bar{q} \bar{y}} e^{-i \omega_{k} t+i \omega_{\bar{j}} t}+\right. \\
& \left.+\left[\hat{a}_{\bar{k}}+\hat{a}_{\bar{q}}\right] e^{-i \bar{k} \bar{x}+i \bar{q} \bar{y}} e^{i \omega_{k} t-i \omega_{q} t}\right)= \\
& =i \int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \bar{k}(\bar{x}-\bar{y})}=i \delta^{(3)}(\bar{x}-\bar{y}) .
\end{aligned}
$$

The function $\Delta\left(X_{A}-X_{B}\right)=$
$=\left[\phi\left(x_{A}\right), \phi\left(x_{B}\right)\right]$ is known as Pauli - Jordan function. Since $\phi(x)$ is linear in $\hat{a}^{1}, a^{1+}$, the commutator of $\phi\left(x_{A}\right)$ and $\phi\left(x_{B}\right)$ is a c-number and $\langle 0|\left[\phi\left(x_{A}\right), \phi\left(x_{B}\right)\right]|0\rangle=$ $=\left[\phi\left(x_{A}\right), \phi\left(x_{B}\right)\right]$. We have then:

$$
\begin{aligned}
& \Delta\left(x_{A}-x_{B}\right)=\int d^{3} \tilde{k} d^{3} \tilde{q}\left(\left[a_{\bar{k}} a_{\bar{q}}^{+}\right] e^{-i k x_{A}+i q x_{B}}+\right. \\
& +\left[a_{\bar{k}}^{+} a_{\bar{q}}\right] e^{i k x_{A}-i q x_{B}}= \\
& =\int d^{3} \tilde{k} d^{3} \tilde{q}\left(e^{-i k x_{A}+i q x_{B}}-e^{i k x_{A}-i q x_{B}}\right) \\
& \times(2 \pi)^{3} 2 \omega_{\bar{k}} \delta(\bar{k}-\bar{q})= \\
& =\int d^{3} \tilde{k}\left(e^{-i k\left(x_{A}-x_{B}\right)}-e^{i k\left(x_{A}-x_{B}\right)}\right)
\end{aligned}
$$

where the notation $\int d^{3} k \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 \omega_{k}}$ was used. This expression can be
written in a covariant form using

$$
\begin{aligned}
& \delta\left(k^{2}-m^{2}\right)=\frac{1}{2 \omega_{\bar{k}}}\left[\delta\left(k_{0}+\omega_{\bar{k}}\right)+\delta\left(k_{0}-\omega_{\bar{k}}\right)\right] \\
& \Rightarrow \Delta\left(x_{A}-x_{B}\right)=\int \frac{d^{4} k}{(2 i)^{3}} \delta\left(k^{2}-m^{2}\right) \varepsilon\left(k_{0}\right) e^{-i k\left(x_{A}\right)}
\end{aligned}
$$

where $\varepsilon\left(K_{0}\right)=K_{0} /\left|K_{0}\right|=\operatorname{sgn} K_{0}$.

- For space-like separated $X_{A}$ and $X_{B}$, we can just use the result for equaltime correlator,

$$
\begin{aligned}
& {[\phi(t, \bar{x}), \phi(t, \bar{y})]=\int \frac{d^{3} k}{(2 i)^{3} 2 \omega_{\bar{k}}}\left(e^{-i k(x-y)}-\right.} \\
& \left.-e^{i k(x-y)}\right)=0
\end{aligned}
$$

and the fact that the measure $\frac{d^{3} K}{2 w_{\tilde{K}}}$ and $k(x-y)$ are lor-invar. $\Rightarrow$ the lor. boost connects the correlator at any space-like separated $X_{A}, X_{B}$ to the equal-fime corr. $\left.\Rightarrow<0\left|\left[\phi\left(x_{A}\right) \phi\left(x_{B}\right)\right]\right| 0\right\rangle$ $=0$ for space-like separated $X_{A}, X_{B}$.
(c) For massless field $\phi(t, \bar{x})$, we have the expansion:

$$
\phi(t, x)=\int \frac{d^{3} k}{2 \omega_{k}^{-}(2 \pi)^{3}}\left(a_{\bar{k}} e^{-i k x}+a_{k}^{*} e^{i k x}\right)
$$

where $\omega_{k}=|\bar{k}|$.
If $\phi_{\text {new }}(\bar{x}, t=0)=\varnothing\left(\frac{\bar{x}}{\lambda}, t=0\right)$, then
$\phi_{\text {new }}(\bar{x}, t=0)=\int \frac{d^{3} k}{2 \omega_{\bar{k}}(2 i i)^{3}}\left(a_{\bar{k}} e^{i \bar{k} \bar{x} / \lambda}+\right.$

$$
\left.+a_{\bar{k}}^{*} e^{-i \bar{k} \bar{x} / x}\right)
$$

Changing var. to $K_{i}^{\prime}=K_{i} / \lambda$, we get

$$
\begin{aligned}
& \phi_{\text {new }}(\bar{x}, t=0)=\lambda^{3} \int \frac{d^{3} k^{\prime}}{2 \omega_{\bar{k}^{\prime}}} \frac{\omega_{\bar{k}^{\prime}}}{\omega_{\bar{k}}} \frac{1}{(2 \pi)^{3}}\left(a_{\bar{k}} e^{i \bar{k}^{\prime} \bar{x}}\right. \\
& \left.\quad+a_{\bar{k}}^{*} e^{-i \bar{k}^{\prime} \bar{x}}\right)
\end{aligned}
$$

So, $\quad a_{\text {new }}\left(\bar{k}^{\prime}\right)=\lambda^{3} \frac{\omega_{\bar{k}}^{\prime}}{\omega_{\bar{k}}} a(\bar{k})=$

$$
=\lambda^{2} a\left(\lambda k^{\prime}\right)
$$

Thus, $a_{\text {new }}\left(\bar{k}^{\prime}\right)=\lambda^{2} a\left(1 k^{\prime}\right)$.

The Hamiltonian transforms as

$$
\begin{aligned}
& \left.H=\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} a^{*} / k\right) a(k)= \\
& =\frac{1}{2} \int \frac{\lambda^{3} d^{3} k^{\prime}}{(2 \pi)^{3}} \frac{1}{\lambda^{4}} a_{\text {new }}^{*}\left(k^{\prime}\right) a_{\text {new }}\left(k^{\prime}\right)= \\
& =\frac{1}{\lambda} H_{\text {new }} \text {. Thess, } I_{\text {new }}=\lambda Z .
\end{aligned}
$$

(d) The quantum Hamiltonian for a free massless scalar field is

$$
: \hat{H}:=\int d^{3} \tilde{k} \omega_{\hat{k}} \hat{a}_{\bar{k}}^{+} \hat{a}_{\bar{k}}
$$

where $\omega_{\bar{k}}=|\bar{K}|$ in massless case. Acting on a single-particle state $|k\rangle$, if gives $: \hat{H}:|k\rangle=\omega_{\bar{k}}|k\rangle$. Multiparticle states $\left|K_{1} \ldots K_{n}\right\rangle$ are eifenstates, of $: \vec{H}$ : with eigenvalue $\omega_{\bar{k}_{1}}+\cdots \omega_{\bar{k}_{n}}$. Under $K \rightarrow K / \lambda: \omega_{\bar{k}} \rightarrow \omega_{\bar{k}} / \lambda$,
ire. the energy of massless modes decreases by a factor of $l$, with excitation number unchanged.

- For massive modes, $\omega_{\bar{k}}^{2}=\bar{k}^{2}+m^{2}$,
so in rel. case $(|\bar{k}| \gg m) \omega_{\bar{k}} \rightarrow \omega_{\bar{k}} /_{\lambda}$,
in non-rel $(|\bar{k}| \ll m): \omega_{\bar{k}} \rightarrow \omega_{\bar{k}}$.

Q6. (a) In the Schrodinger picture, states are time-dep and obey

$$
i \hbar \frac{\partial}{\partial t}|\varphi\rangle_{s}=\hat{H}|\varphi\rangle_{s}
$$

In the Heisenberg picture, operators are time-dep and obey

$$
\frac{d}{d t} \hat{O}_{H}=\frac{i}{\hbar}\left[H, \hat{O}_{H}\right]
$$

Since $|\varphi(\bar{x}, t)\rangle_{s}=e^{-\frac{i}{\hbar} \hat{H}\left(t-t_{0}\right)}\left|\varphi\left(\bar{x}, t_{0}\right)\right\rangle_{s}$

$$
\equiv \bar{U}\left(t, t_{0}\right) / \varphi\left(\bar{x}, t_{0}\right\rangle_{s}=
$$

$$
\text { and we must have }=\hat{U}\left(t, t_{0}\right) / \varphi\left(t_{0}\right)_{H} \text {. }
$$

$$
\begin{aligned}
& \langle\varphi(\bar{x}, t)| \hat{\theta}_{S}|\varphi(\bar{x}, t)\rangle_{s}=\left\langle\varphi\left(t_{0}\right)\right| \hat{\theta}_{H}\left|\varphi\left(t_{0}\right)\right\rangle \\
& \hat{\theta}_{H}=\hat{U}^{+}(t) \hat{\theta}_{s} \bar{U}(t) .
\end{aligned}
$$

Interaction picture is convenient for Hamiltonians of the type

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{I}
$$

where $\hat{H}_{0}$ is the Hamiltonian of $a$ free theory. Introduce

$$
\begin{aligned}
\hat{O}_{\text {int.p. }} & =\hat{U}_{0}+\hat{\theta}_{s} \hat{U}_{0}, \text { where } \\
\hat{U_{0}}= & e^{-\frac{i}{\hbar} \hat{H}_{0}\left(t-t_{0}\right)} . \text { Then } \\
\dot{\theta}_{\text {int.p. }} & =\frac{i}{\hbar}\left[\hat{H}_{0}, \hat{\theta}_{\text {int.p. }}\right]
\end{aligned}
$$

i.e. e.o.m. for $\hat{\theta}_{\text {int. }}$. are the same as Hers e. o.m. for free fields.
Again, phys quantities (expect. values of operators I must be the same in any picture $\Rightarrow$

$$
|\varphi(t)\rangle_{s}=\bar{U}_{0}(t)|\varphi(t)\rangle_{\text {int.p. }}
$$

Since

$$
i \hbar \frac{\partial}{\partial t}|\varphi(t)\rangle_{s}=\left(\hat{H}_{0}+\hat{H}_{I}\right)|\varphi(t)\rangle_{s}
$$

for $|\varphi(t)\rangle_{\text {inti. }}$ we find the eq.

$$
\text { it } \frac{\partial}{\partial t}|\varphi(t)\rangle_{\text {int.p. }}=\hat{H}_{I}^{\text {int.p. }}|\varphi(t)\rangle_{\text {int.p, }}
$$

where $\hat{H}_{I}^{\text {ip. }} \equiv \hat{U}_{0}+\hat{H}_{I} \hat{U}_{0}$.
(b) A formal solution to the Schro:diner eg in the int. picture can be written as $|\varphi(t)\rangle_{i p}=\hat{U}_{I}\left(t, t_{0}\right)\left|\varphi\left(t_{0}\right)\right\rangle_{i p}$, where $\tilde{U}_{I}^{1}\left(t, t_{0}\right)=e^{-\frac{i}{\hbar} \hat{H}_{I}^{I} P}\left(t-t_{0}\right)$
This evolution operator itself obeys the same eq.

$$
i \hbar \frac{\partial}{\partial t} \hat{V_{I}}\left(t, t_{0}\right)=\hat{H}_{I}^{i p} \cdot \hat{U_{I}}\left(t, t_{0}\right)
$$

which can be re-urittew as an integral

$$
\hat{U_{I}}\left(t, t_{0}\right)=1-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{I}^{i p}\left(t^{\prime}\right) \hat{U}_{I}\left(t^{\prime}, t_{0}\right)
$$

The integral eg. can be solved by iterations in powers of $\hat{H}_{I}^{i p}$ (more precisely, a small parameter such as the inter. constant contained in $\hat{H}_{F}^{\text {ip }}$ ) - this produces a formal series
$0^{\text {th }}$ order: $\hat{U}_{I}\left(t, t_{0}\right)=1$
/ storder: $\hat{U}_{I}\left(t, t_{0}\right)=1-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{I} \dot{p}\left(t^{\prime}\right)$
$2^{\text {nd }}$ order: $\hat{U}_{I}\left(t, t_{0}\right)=11-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{I}{ }_{I}\left(t^{\prime}\right)^{\prime} \times$

$$
\begin{aligned}
& \times\left(\mathbb{1}-\frac{i}{\hbar} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} \hat{H}_{I}^{i p}\left(t^{\prime \prime}\right)\right)= \\
= & \mathbb{1}-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{I}^{i P}\left(t^{\prime}\right)+\left(-\frac{i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{I}^{i p}\left(t^{\prime}\right) \times \\
& \times \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} \hat{H}_{I}^{i}\left(t^{\prime \prime}\right)
\end{aligned}
$$

The last term can be written as

$$
\begin{aligned}
& \left(-\frac{i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} \hat{H}_{I}^{i p}\left(t^{\prime}\right) \hat{H}_{I}^{i p}\left(t^{\prime \prime}\right)= \\
& =\left(-\frac{i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t^{\prime \prime} \int_{t^{\prime \prime}}^{t} d t^{\prime} \hat{H}_{I}^{i p}\left(t^{\prime}\right) \hat{H}_{I}^{i p}\left(t^{\prime \prime}\right)
\end{aligned}
$$

It is helpful to consider the integration region and limits in Fig:


Changing the dummy var. $t^{\prime \prime} \rightarrow t^{\prime}, t^{\prime} \rightarrow t^{\prime \prime}$, we have

$$
\left(-\frac{i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t^{\prime} \int_{t^{\prime}}^{t} d t^{\prime \prime} \hat{H}_{工}^{i}\left(t^{\prime \prime}\right) \hat{H}_{I}^{\prime P}\left(t^{\prime}\right)
$$

Thus, $\left(-\frac{i}{\hbar}\right)^{2} \int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} \hat{H}_{I}^{i s}\left(t^{\prime}\right) \hat{H}_{I}^{i p}\left(t^{\prime \prime}\right)$

$$
\begin{aligned}
& =\frac{\left(-i(t)^{2}\right)^{t} d t^{\prime} \int_{t_{0}}^{t} d t^{\prime \prime} T\left[\hat{H}_{I}^{1}\left(t^{\prime}\right) \hat{H}_{I}\left(t^{\prime \prime}\right)\right],}{t_{0}} \text { (25) } \\
& \text { where } T\left[\hat{\theta}\left(t^{\prime}\right) \hat{\theta}\left(t^{\prime \prime}\right)\right]=\left\{\begin{array}{l}
\hat{O}\left(t^{\prime}\right) \hat{O}\left(t^{\prime \prime}\right), \\
\hat{\theta}\left(t^{\prime \prime}\right) \hat{\theta}\left(t^{\prime}\right), \\
t^{\prime}<t^{\prime \prime}
\end{array}\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \hat{U}_{I}\left(t, t_{0}\right)=\mathbb{1}-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \hat{H}_{I}^{i s}\left(t^{\prime}\right)+ \\
& \quad+\left(\frac{i}{\hbar}\right)^{2} \frac{1}{2} \int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t} d t^{\prime \prime} T\left[H_{I}^{i}\left(t^{\prime}\right) \hat{H}_{I}^{\dot{\varphi}}\left(t^{\prime \prime}\right]\right.
\end{aligned}
$$

Finally,

$$
\hat{U}_{I}\left(t, t_{0}\right)=T\left\{\exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} H_{I}^{i p}\left(t^{\prime}\right)\right]\right\} .
$$

For scattering, $t \rightarrow+\infty$, to $\rightarrow-\infty$,

$$
\hat{S}=\hat{U}_{I}(\infty,-\infty)=\operatorname{Texp}_{\operatorname{ex}}\left[-\frac{i}{\hbar} \int d^{y} x \dot{X}_{I}^{i p}(x)\right],
$$ where $\mathcal{H}$ is the Hamiltonian density.

(c) Wick's theorem expresses time-ordered products of fields in terms of normal ordered product and contractions:

$$
\begin{array}{r}
T\left[\phi_{i p}\left(x_{1}\right) \cdots \phi_{i p}\left(x_{n}\right)\right]=: \phi_{i p}\left(x_{1}\right) \cdots \phi_{i p}\left(x_{n}\right)_{i} \\
+\quad \text { all possible contractions: }
\end{array}
$$

where the contraction is defined as

$$
\begin{aligned}
& \phi_{i p}(x) \phi_{i p}(y)=D_{F}(x-y), \text { with } \\
& D_{F}(x-y)=\int \frac{d^{4} k}{(2 i)^{4}} \frac{i}{k^{2}-m^{2}+i \varepsilon} e^{-i k(x-y)}
\end{aligned}
$$

- To comprite $\left\langle 0 / T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi^{3}\left(x_{4}\right)^{10}\right\rangle$ first recall that var. expectation value of normal-ordered uncontracted terms vanishes, since they are of the form $\langle 0| a^{+} \ldots a|0\rangle=0$. Thus, we need to list all possible contractions only:

$$
\begin{aligned}
\langle 0 & T T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi^{3}\left(x_{4}\right)|0\rangle= \\
= & 3 \partial_{F}\left(x_{1}-x_{2}\right) \partial_{F}\left(x_{3}-x_{4}\right) \partial_{F}(0)+ \\
& +3 \partial_{F}\left(x_{1}-x_{3}\right) \partial_{F}\left(x_{2}-x_{4}\right) \partial_{F}(0)+ \\
& +3 \partial_{1}\left(x_{1}-x_{4}\right) \partial\left(x_{2}-x_{3}\right) \partial_{F}(0)+ \\
& +6 \partial_{F}\left(x_{1}-x_{4}\right) \partial_{F}\left(x_{2}-x_{4}\right) \partial_{F}\left(x_{3}-x_{4}\right)
\end{aligned}
$$

This expression is divergent since $\theta_{f}(0)$ is divergent.

$$
\begin{aligned}
&(d) \quad \mathcal{L}=\mathcal{L}_{k i n}+\mathscr{L}_{\text {int }} \\
& \mathcal{L}_{\text {kin }}= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \\
&+\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \partial_{\mu} a \partial^{\mu} a \\
& \mathcal{L}_{\text {int }}= \frac{1}{2} m^{2} \phi^{2}+\frac{1}{2} m_{a}^{2} a^{2}+\frac{\lambda \phi}{M_{p}} F_{\mu,} F^{\mu \nu}+ \\
&+g \phi a^{2}
\end{aligned}
$$

The field $\phi$ couples to Ar via the (Gauje-invar.) term $\phi F_{\mu \nu} F^{\mu \nu}$ and to a via $\phi a^{2}$. The two vertices
are

[Note that this is the derivative coupling, i.e. in momentum space the vertex involves the two momenta $K_{1}^{\mu}$ and $K_{2}^{\mu}$ (in a gaugeinvar. combination $\left.\eta^{\mu \nu} k_{1} \cdot k_{2}-k_{1}^{\mu} k_{2}^{\mu}\right)$ ] and


So we have 2 channels of decay for $\varnothing$. Total decay width

$$
\Gamma=\frac{1}{2 \omega_{\phi}} \sum_{n=1,2} \int d \Pi_{n}\left|\mu_{f_{i}}^{(n)}\right|^{2}=\Gamma_{1}+\Gamma_{2}
$$

and the life-time $\tau=1 / \Gamma$.
In the rest frame of $\phi, \omega_{\phi}=m$. Also, $M_{f_{i}}^{(1)} \sim \frac{\lambda}{M_{p}}\left(\eta^{\mu} k_{1} k_{2}-k_{1}^{\mu} k_{2}^{\nu}\right)$

$$
\mu_{f_{i}}^{(2)} \sim g
$$

Kinematically, channel I is available I $m$ (since photons are massless), and $M_{f i}^{(1)} \sim \frac{\lambda}{\mu_{p}} \varepsilon_{\gamma}^{2}$, with $\varepsilon_{\gamma} \sim \mathrm{m} / \mathrm{2}$. Thus, $T_{1} \sim \frac{\lambda^{2}}{M_{p}^{2}} \frac{1}{m} m^{4} \sim \frac{\lambda^{2} m^{3}}{M_{p}^{2}}$. channel 2 is only available for $m>2 m_{a}$, and $\Gamma_{2} \sim g^{2} / m$
Therefore, for $0<m<2 m_{a}$, we have $\bar{c} \sim \tau_{1}=M_{p}^{2} / \lambda^{2} m^{3}$. For $m>2 m a$, the second channel gives $\tau_{2} \sim \mathrm{~m} / \mathrm{g}^{2}$. With $g^{-1} \mu_{p} \gg /$, Mp/m $\gg 1$, we have $T_{1} \ll T_{2}$ (When channel 2 is available). In summary:


