
Magnetohydrodynamics and Turbulence

Alexander Schekochihin, Part III (CASM) Lent Term 2005

EXAMPLE SHEET I: Problems 1-3

These problems will be discussed in the 1st Examples Class (9.02.05, 14:30 in MR5).

NB: Results of Problems 2 and 3 will be used in future Examples Sheets and Lectures, so do work
them out!

1. Go through your notes on the kinetic derivation of MHD equations and formulate an intelligent
question.

2. Electron MHD. Consider Ohm’s law with the Hall term:
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1. Estimate the relative size of the two terms on the right-hand side. Use σ = e2n/meνe, where
νe is the electron collision frequency. Express the ratio of the two terms as a ratio of certain
time scales and as a ratio of certain length scales. These quatities may prove useful:
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where s = i, e is the species index.

2. If you have figured out how to do these estimates, take the more general form of Ohm’s law
derived in my lectures,
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and estimate the size of all terms on the rhs compared to the u × B/c term. You may use
pe ∼ nTe, Π̂e ∼ µeue/l, where the electron viscosity is µe ∼ menvth,eλmfp,e. Try to work out
the answers in terms of dimensionless ratios of physical quantities such as, for example, ρi/l,
where ρi is the ion Larmor radius, l is the characteristic length scales of the fluid quantities
like u and B.

3. Derive an equation for the evolution of the magnetic field using Ohm’s law (1), Faraday’s law
and Ampère’s law. This is the induction equation in Hall MHD (or Electron MHD, EMHD).

4. Suppose the resistive term is negligible (what does this mean, physically?). Does your induction
equation with the Hall term and η = 0 allow magnetic field lines to be broken?
Hint: If you answer this question correctly, you will understand why EMHD is called EMHD.

3. Reduced MHD. Let us consider a plasma threaded by a very strong uniform magnetic field
pointing in the z (vertical) direction: B0 = B0ẑ. Such a field will have the effect of suppressing all
gradients along itself, so let us neglect them, ∇ = (∂x, ∂y, 0) (no z variation in any of the fields).
Let us write the total magnetic field in the form B = B0ẑ + δB (|δB| � B0) and assume that both
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δB and the velocity field are two-dimensional: δB = (Bx, By, 0), u = (ux, uy, 0). Since the magnetic
field is solenoidal, we can write δB in terms of one scalar function ψ (called the flux function):
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∂y
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, or δB = ẑ ×∇ψ (4)

(confirm that the last formula is equivalent to the first two; show that contours of constant ψ are
the field lines of the field δB; note that ψ = −Az, the z component of the vector potential). Now
you will derive the so-called equations of Reduced MHD (RMHD):

1. Show that j = (c/4π)ẑ∇2ψ.

2. Write Ohm’s law neglecting δB compared to B0,
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and show that u = c(E × B0)/B
2
0 . Express the perpendicular electric field in terms of the

electrostatic potential, E⊥ = −∇ϕ, and show that the velocity field can be written as
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where φ = −(c/B0)ϕ is called the stream function (note that this velocity field is incompress-
ible).

3. Reduce the induction equation to the following equation for the flux function:
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is called the Poisson bracket.

4. Show that the vorticity is ω = ∇× u = ẑ∇2φ. Write the momentum equation and show that
it leads to the following equation for the stream function:
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Equations (8) and (7) are the equations of RMHD in two dimensions.
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