Statistical Mechanics and Thermodynamics of Simple Systems

Handout 8

Partition function

The partition function, Z, is defined by

$$
\begin{equation*}
Z=\sum_{i} \mathrm{e}^{-\beta E_{i}} \tag{1}
\end{equation*}
$$

where the sum is over all states of the system (each one labelled by i).
(a) The two-level system: Let the energy of a system be either $-\Delta / 2$ or $\Delta / 2$. Then

$$
\begin{equation*}
Z=\mathrm{e}^{\beta \Delta / 2}+\mathrm{e}^{-\beta \Delta / 2}=2 \cosh \left(\frac{\beta \Delta}{2}\right) . \tag{2}
\end{equation*}
$$

(b) The simple harmonic oscillator: The energy of the system is $\left(n+\frac{1}{2}\right) \hbar \omega$ where $n=$ $0,1,2, \ldots$, and hence

$$
\begin{equation*}
Z=\sum_{n=0}^{\infty} \mathrm{e}^{-\beta\left(n+\frac{1}{2}\right) \hbar \omega}=\mathrm{e}^{-\beta \frac{1}{2} \hbar \omega} \sum_{n=0}^{\infty} \mathrm{e}^{-n \beta \hbar \omega}=\frac{\mathrm{e}^{-\frac{1}{2} \beta \hbar \omega}}{1-\mathrm{e}^{-\beta \hbar \omega}}, \tag{3}
\end{equation*}
$$

Using the partition function to obtain functions of state

The table below lists the thermodynamic quantities derived from the partition function Z.

	Function of state	Statistical mechanical expression
U		$-\frac{\mathrm{d} \ln Z}{\mathrm{~d} \beta}$
F		$-k_{\mathrm{B}} T \ln Z$
S	$=-\left(\frac{\partial F}{\partial T}\right)_{V}=\frac{U-F}{T}$	$k_{\mathrm{B}} \ln Z+k_{\mathrm{B}} T\left(\frac{\partial \ln Z}{\partial T}\right)_{V}$
p	$=-\left(\frac{\partial F}{\partial V}\right)_{T}$	$k_{\mathrm{B}} T\left(\frac{\partial \ln Z}{\partial V}\right)_{T}$
H	$=U+p V$	$k_{\mathrm{B}} T\left[T\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right]$
G	$=F+p V=H-T S$	$k_{\mathrm{B}} T\left[-\ln Z+V\left(\frac{\partial \ln Z}{\partial V}\right)_{T}\right]$
$C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}$	$k_{\mathrm{B}} T\left[2\left(\frac{\partial \ln Z}{\partial T}\right)_{V}+T\left(\frac{\partial^{2} \ln Z}{\partial T^{2}}\right)_{V}\right]$	

You probably only need to remember the first two; the others can be quickly worked out.

The internal energy U, the entropy S and the heat capacity C_{V} for (a) the twostate system (with energy levels $\pm \Delta / 2$) and (b) the simple harmonic oscillator with angular frequency ω.

Combining partition functions

Suppose the energy contains two independent contributions a and b with energy levels E_{i}^{a} and E_{j}^{b}, respectively, then

$$
\begin{align*}
Z & =\sum_{i} \sum_{j} \mathrm{e}^{-\beta\left(E_{i}^{a}+E_{j}^{b}\right)} \\
& =Z_{a} Z_{b}, \tag{4}
\end{align*}
$$

i.e. the product of the partition functions for the a and b systems. The generalization to more independent contributions is obvious: $Z=Z_{a} Z_{b} Z_{c} \ldots$

Following from this, if $Z(1)$ is the partition function for one system, then the partition function for an assembly of N distinguishable systems each having exactly the same set of energy levels (e.g. N localized harmonic oscillators, all with the same frequency) is

$$
\begin{equation*}
Z(N)=Z^{N}(1) \tag{5}
\end{equation*}
$$

If the N systems are indistinguishable (e.g. an ideal gas of identical atoms or molecules) then

$$
\begin{equation*}
Z(N)=\frac{Z^{N}(1)}{N!} \tag{6}
\end{equation*}
$$

Example: the spin- $\frac{1}{2}$ paramagnet

In quantum mechanics, a particle with spin angular momentum equal to $\frac{1}{2}$, placed in a magnetic field B along the z direction, can exist in one of two eigenstates:

- $|\uparrow\rangle$, with angular momentum parallel to the B field, and hence magnetic moment along z equal to $-\mu_{\mathrm{B}}$ (costing an energy $+\mu_{\mathrm{B}} B$).
- $|\downarrow\rangle$, with angular momentum antiparallel to the B field, and hence magnetic moment along z equal to $+\mu_{\mathrm{B}}\left(\right.$ costing an energy $\left.-\mu_{\mathrm{B}} B\right)$.

Here $\mu_{\mathrm{B}}=e \hbar / 2 m$ is the Bohr magneton and we have used the fact that energy $=-\boldsymbol{\mu} \cdot \mathbf{B}$, and also that for a negatively charged particle (the electron) the angular momentum is antiparallel to the magnetic moment.

Therefore, one spin- $\frac{1}{2}$ particle behaves like a two-state system, with the two states having energies $E= \pm \mu_{\mathrm{B}} B$, and the single-particle partition function is simply

$$
\begin{equation*}
Z(1)=\mathrm{e}^{\beta \mu_{\mathrm{B}} B}+\mathrm{e}^{-\beta \mu_{\mathrm{B}} B}=2 \cosh \left(\beta \mu_{\mathrm{B}} B\right) . \tag{7}
\end{equation*}
$$

A spin- $\frac{1}{2}$ paramagnet is an assembly of N such particles which are assumed to be noninteracting, i.e. each particle is independent and "does its own thing".

The N-particle partition function, treating the spin- $-\frac{1}{2}$ particles as distinguishable, is given by

$$
\begin{equation*}
Z(N)=Z^{N}(1)=\left[2 \cosh \left(\beta \mu_{\mathrm{B}} B\right)\right]^{N}, \tag{8}
\end{equation*}
$$

and hence F is given by

$$
\begin{equation*}
F=-k_{\mathrm{B}} T \ln Z(N)=-N k_{\mathrm{B}} T \ln \left[2 \cosh \left(\beta \mu_{\mathrm{B}} B\right)\right] \tag{9}
\end{equation*}
$$

We can work out the total magnetic moment μ of the paramagnet by computing

$$
\begin{equation*}
\mu=-\left(\frac{\partial F}{\partial B}\right)_{T}=N \mu_{\mathrm{B}} \tanh \left(\beta \mu_{\mathrm{B}} B\right) . \tag{10}
\end{equation*}
$$

The behaviour of μ, given by eqn (10), is shown in the figure on the left.

The magnetization M is the magnetic moment per unit volume, so

$$
\begin{equation*}
M=\frac{\mu}{V}=\frac{N \mu_{\mathrm{B}}}{V} \tanh \left(\beta \mu_{\mathrm{B}} B\right) . \tag{11}
\end{equation*}
$$

The magnetic susceptibility χ is defined by $M=\chi H$ where H is a small applied field, or more formally $\chi=\left(\frac{\partial M}{\partial H}\right)_{T}$. When $\beta \mu_{\mathrm{B}} B \ll 1$ we can use $\tanh x \approx x$ for $x \ll 1$ to find that

$$
\begin{equation*}
M \approx \frac{N \mu_{\mathrm{B}}^{2} B}{V k_{\mathrm{B}} T} \tag{12}
\end{equation*}
$$

By definition, $\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M})=\mu_{0}(1+\chi) \mathbf{H}$ for a paramagnet. For a weakly magnetic material (like a paramagnet) $\chi \ll 1$, and therefore

$$
\begin{equation*}
\chi \approx \frac{\mu_{0} M}{B}=\frac{N \mu_{0} \mu_{\mathrm{B}}^{2}}{V k_{\mathrm{B}} T} . \tag{13}
\end{equation*}
$$

This yields Curie's law:

$$
\begin{equation*}
\chi \propto \frac{1}{T} . \tag{14}
\end{equation*}
$$

