
Basic Thermodynamics

Handout 6

Maxwell’s relations

The Maxwell relations follow straightforwardly from the exact differentials of the thermo-
dynamic potentials: (
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(Don’t memorize them, remember how to derive them!)

Useful maths

Partial derivatives: Consider x as a function of two variables y and z. This can be written
x = x(y, z) and we have that
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But rearranging x = x(y, z) can lead to having z as a function of x and y so that z = z(x, y)
in which case

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy. (2)

Substituting (2) into (1) gives
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The terms multiplying dx give the reciprocal theorem:(
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and the terms multiplying dz give the reciprocity theorem:(
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Thermodynamic coefficients and moduli

Heat capacities:
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Compressibilities:
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Bulk moduli:
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Thermal expansivities:
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Relations between coefficients and moduli

• Cp − Cv = V Tβ2
p/κT

• κT/κS = Cp/CV = γ
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