Basic Thermodynamics

Handout 6

Maxwell's relations

The Maxwell relations follow straightforwardly from the exact differentials of the thermodynamic potentials:

$$
\begin{aligned}
\left(\frac{\partial T}{\partial V}\right)_{S} & =-\left(\frac{\partial p}{\partial S}\right)_{V} \\
\left(\frac{\partial T}{\partial p}\right)_{S} & =\left(\frac{\partial V}{\partial S}\right)_{p} \\
\left(\frac{\partial S}{\partial V}\right)_{T} & =\left(\frac{\partial p}{\partial T}\right)_{V} \\
\left(\frac{\partial S}{\partial p}\right)_{T} & =-\left(\frac{\partial V}{\partial T}\right)_{p}
\end{aligned}
$$

(Don't memorize them, remember how to derive them!)

Useful maths

Partial derivatives: Consider x as a function of two variables y and z. This can be written $x=x(y, z)$ and we have that

$$
\begin{equation*}
\mathrm{d} x=\left(\frac{\partial x}{\partial y}\right)_{z} \mathrm{~d} y+\left(\frac{\partial x}{\partial z}\right)_{y} \mathrm{~d} z \tag{1}
\end{equation*}
$$

But rearranging $x=x(y, z)$ can lead to having z as a function of x and y so that $z=z(x, y)$ in which case

$$
\begin{equation*}
\mathrm{d} z=\left(\frac{\partial z}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial z}{\partial y}\right)_{x} \mathrm{~d} y \tag{2}
\end{equation*}
$$

Substituting (2) into (1) gives

$$
\mathrm{d} x=\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial x}\right)_{y} \mathrm{~d} x+\left[\left(\frac{\partial x}{\partial y}\right)_{z}+\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}\right] \mathrm{d} y .
$$

The terms multiplying $\mathrm{d} x$ give the reciprocal theorem:

$$
\left(\frac{\partial x}{\partial z}\right)_{y}=\frac{1}{\left(\frac{\partial z}{\partial x}\right)_{y}}
$$

and the terms multiplying $\mathrm{d} z$ give the reciprocity theorem:

$$
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
$$

Heat capacities:

$$
C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}, \quad C_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p}
$$

Compressibilities:

$$
\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}, \quad \kappa_{S}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{S}
$$

Bulk moduli:

$$
B_{T}=\frac{1}{\kappa_{T}}=-V\left(\frac{\partial p}{\partial V}\right)_{T}, \quad B_{S}=\frac{1}{\kappa_{S}}=-V\left(\frac{\partial p}{\partial V}\right)_{S}
$$

Thermal expansivities:

$$
\beta_{p}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}, \quad \beta_{S}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{S}
$$

Relations between coefficients and moduli

- $C_{p}-C_{v}=V T \beta_{p}^{2} / \kappa_{T}$
- $\kappa_{T} / \kappa_{S}=C_{p} / C_{V}=\gamma$

