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Heat capacity of a gas of heteronuclear diatomic molecules

We restrict ourselves to heteronuclear diatomic molecules (i.e. both atoms that make up the
molecule are different, e.g. CO, HD). Homonuclear diatomic molecules (e.g. H2, N2, O2) have
additional quantum mechanical constraints imposed on them by exchange symmetry.

We assume that the translational, rotational and vibrational motions are independent, which
is valid providing the characteristic energy scales of each degree of freedom are distinct. With
this assumption, one can write

Z = ZtransZrotZvib, (1)

and hence U = Utrans + Urot + Uvib. Consider each degree of freedom in turn:

• From the equipartition theorem, Utrans =
3
2
RT per mole, so Ctrans

V = 3
2
R.

• Treat the vib. part as N SHOs. This means that eqn (??) applies but with N instead
of 3N in the prefactor. When T ≫ ΘE, C

vib
V → R per mole.

• Treat the rot. motion as a rigid rotor. The energy levels are quantized:

El =
h̄2

2I
l(l + 1), (I = µR2), (2)

where l is an integer (l ≥ 0), I is the moment of inertia of the molecule, µ = m1m2/(m1+
m2) is its reduced mass, and R is the separation of the atoms. Each energy level is
(2l + 1)-fold degenerate, so that the single-molecule partition function is

Zrot(1) =
∞∑
l=0

(2l + 1) e−β h̄2

2I
l(l+1)

= 1 + 3e−2
Θrot
T + 5e−6

Θrot
T + . . . , (3)

where Θrot = h̄2/(2IkB). When T ≫ Θrot,

Zrot(1) ≈
∫ ∞

0
(2l + 1) e−

Θrot
T

l(l+1) dl =
T

Θrot

, (4)

Hence, Crot
V → R per mole.

The molar heat capacity CV

of an ideal gas of heteronu-
clear diatomic molecules,
showing the stepwise in-
creases in heat capacity as,
first, the rotational modes,
and second, the vibrational
modes become thermally
activated.
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Models of the Earth’s atmosphere

Isothermal atmosphere: Assume the atmosphere is an ideal gas at constant temperature
T . Gravitational potential energy increases with height above the Earth’s surface, so the
probability of a molecule reaching height h is given by the Boltzmann probability,

P (h) ∝ exp(−mgh

kBT
), (5)

where m is the mass of an air molecule. At fixed T , P (h) is proportional to the number density
of molecules, which is in turn proportional to pressure (p = nkBT ). Hence,

p(h)

p(0)
= exp(−Mgh

RT
), (6)

where M ≃ 0.029 kgmol−1 is the molar mass of air (mostly nitrogen) and g = 9.81m s−2.

Adiabatic atmosphere: This is a slightly better approximation to the Earth’s atmosphere.
Consider a parcel of air which undergoes adiabatic expansion as it rises. For an adiabatic
expansion of an ideal gas, pV γ = constant, where γ = Cp/CV , and pV = RT for 1 mole, so

dp

p
= − γ

γ − 1

dT

T
. (7)

From (6),

dp

p
= −Mg

RT
dh. (8)

Equating (7) and (8) and integrating, we obtain

T (h) = T (0)− Lh, (9)

where L = Mg/Cp is known as the adiabatic lapse rate. For dry air, L = 9.7 × 10−3Km−1,
assuming Cp = 7R/2. In reality, L ≃ 6.5 × 10−3Km−1. To obtain the variation of pressure
with height, substitute (9) in (8) and integrate to give

p(h)

p(0)
=

[
1− Lh

T (0)

]Mg
RL

. (10)
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The figure shows the atmospheric pressure as
a function of height above the Earth’s surface
for the isothermal and adiabatic atmospheric
models.
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