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Some useful constants

Boltzmann’s constant kB 1.3807× 10−23 J K−1

Stefan–Boltzmann constant σ 5.67× 10−8 Wm−2K−4

Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 J mol−1 K−1

1 pascal (Pa) 1 N m−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105 N m−2



PROBLEM SET 8: Real Gases, Expansions and Phase Equilibria

Problem set 8 can be covered in 1 tutorial. The relevant material will be done in lectures by
the end of week 8 of Hilary Term. Starred questions (*) are harder. Revision questions are
designed to build on the understanding of Statistical Mechanics developed in the two previous
problem sets.

Real gases

8.1 A gas obeys the equation p(V − b) = RT and has CV independent of temperature. Show
that (a) the internal energy is a function of temperature only, (b) the ratio γ = Cp/CV
is independent of temperature and pressure, (c) the equation of an adiabatic change has
the form p(V − b)γ = constant.

8.2 Dieterici’s equation of state for 1 mole is

p(V − b) = RT e−a/RTV . (1)

(a) Show that the critical point is specified by

Tc = a/4Rb; Vc = 2b; pc = a/4e2b2.

(b) Show that equation (1) obeys a law of corresponding states, i.e. show that it can be
written in reduced units as

p̃(2Ṽ − 1) = T̃ exp

[
2

(
1− 1

T̃ Ṽ

)]
,

where p̃ = p/pc, T̃ = T/Tc, Ṽ = V/Vc.

Real gas expansions

8.3 Explain why enthalpy is conserved in a Joule–Kelvin process. Show that the Joule–
Kelvin coefficient may be written

µJK =

(
∂T

∂p

)
H

=
1

Cp

[
T

(
∂V

∂T

)
p

− V

]
.

The equation of state for helium gas may be expressed as a virial expansion

pV = RT

(
1 +

B

V
+ · · ·

)
in which B is a function of temperature only. The table below gives some values of B
for 1 mole of helium. Determine the Boyle temperature and the inversion temperature.

2



Temperature (K) 10 20 30 40 50 60 70
B (cm3 mol−1) −23.3 −4.0 2.4 5.6 7.6 8.9 9.8

8.4 For a van der Waals gas, show that

lim
p→0

µJK =
1

Cp

(
2a

RT
− b
)

and Tmax
i =

2a

Rb
,

where Tmax
i is the maximum inversion temperature.

8.5* Prove that the equation of the inversion curve of a Dieterici gas is, in reduced units,

p̃ = (8− T̃ ) exp

(
5

2
− 4

T̃

)
,

and sketch it in the p̃–T̃ plane. Hence, show that the maximum inversion temperature
is Tmax

i = 2a/(Rb).

Phase equilibria

8.6 When lead is melted at atmospheric pressure the melting point is 327.0◦C, the density
decreases from 11.01×103 to 10.65×103 kg m−3 and the latent heat is 24.5 kJ kg−1.
Estimate the melting point of lead at a pressure of 100 atm.

8.7 Some tea connoisseurs claim that a good cup of tea cannot be brewed with water at a
temperature less than 97◦C. Assuming this to be the case, is it possible for an astronomer,
working on the summit of Mauna Kea in Hawaii (elevation 4194 m) where the air pressure
is 615 mbar, to make a good cup of tea without the aid of a pressure vessel?

[Latent heat of vaporisation of water = 40.7 kJ mol−1.]

8.8 (a) Show that the temperature dependence of the latent heat of vapourisation L of an
incompressible liquid is given by the following expression:

dL

dT
=
L

T
+ ∆Cp −

L

Vvap

(
∂Vvap
∂T

)
p

,

where ∆Cp = Cp,vap − Cp,liq.
(b) Treating the vapour as an ideal gas, and assuming ∆Cp is independent of tempera-
ture, show that L = ∆CpT + L0.

(c) Show further that when the saturated vapour is expanded adiabatically, some liquid
condenses out if

Cp,liq + T
d

dT

(
L

T

)
< 0.

[Hint: For condensation, what is the condition on
(
∂p
∂T

)
S

in relation to the gradient of
the liquid–vapour phase boundary in the p–T plane?]
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REVISION QUESTIONS on Statistical Mechanics

R.1 Heat Capacity of Metals. The objective of this question is to find at what temperature the
heat capacity of the electron gas in a metal dominates over the heat capacity associated
with the vibrations of the crystal lattice.

(a) Calculate the heat capacity of electrons in aluminium as a function of temperature
for T � TF .

(b) To estimate the heat capacity due to the vibrations of the lattice, you will need to
use the so-called Debye model. Derive it from the results you obtained in PS-7 via the
following assumptions.

The vibrations of the lattice can be modelled as sound waves propagating through the
metal. These in turn can be thought of as massless particles (“phonons”) with energies
ε = ~ω and frequencies ω = csk, where cs is the speed of sound in a given metal and k
is the wave number (allowed wave numbers are set by the size of the system, as usual).
Thus, the statistical mechanics for the phonons is the same as for photons, with two
exceptions: (i) they have 3 possible polarisations in 3D (1 longitudinal, 2 transverse)
and (ii) the wave number cannot be larger, roughly, than the inverse spacing of the
atoms in the lattice (do you see why this makes sense?).

Given these assumptions,

— calculate the density of states g(ε) (or g(ω));

— calculate the mean energy of a slab of metal of volume V ;

— figure out the condition on temperature T that has to be satisfied in order for it to
be possible to consider the maximum wave number effectively infinite;

— calculate the heat capacity in this limit as a function of T (you may need to use the
fact that

∫∞
0
dxx3/(ex − 1) = π4/15)

Hint. You already did all the required maths in Q7.1, so all you need is to figure out
how to modify it to describe the phonon gas.

(c) Roughly at what temperature does the heat capacity of the electrons in aluminium
become comparable to that of the lattice?

[You may need the density of atoms and alectrons in Al — see Q7.3(b). The speed
of sound in Al is cs ≈ 6000 m/s. You may find it convenient to define the Debye
temperature ΘD = ~cs(6π2n)1/3/kB, where n is the number density of the metal. This is
the temperature associated with the maximal wave number in the lattice, which Debye
defined by stipulating that the total number of possible phonon modes was equal to 3
times the number of atoms:

∫ kmax

0
dkg(k) = 3N . For Al, ΘD = 394 K.]

R.2 Low Energy Levels in Degenerate Bose Gas. In a degenerate Bose gas, the lowest energy
level (particle energy ε0 = 0) is macroscopically occupied, in the sense that its occupation
number n0 is comparable with the total number of particles N . Is the first energy level
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(particle energy ε1, the next one above the lowest) also macroscopically occupied? In
order to answer this question, estimate the occupation number of the first level and show
that n1 ∝ N2/3. Comment on the significance of this result: do the particles in the first
level require special consideration as a condensate the same way the zeroth-level ones
did?

R.3 Paramagnetism of Degenerate Bose Gas. Consider bosons with spin 1 in a weak magnetic
field, with energy levels

ε(k) =
~2k2

2m
− 2µBszB, sz = −1, 0, 1,

where µB = e~/2mec is the Bohr magneton (in cgs-Gauss units).

(a) Derive an expression for the magnetic susceptibility of this system. Show that Curie’s
law (χ ∝ 1/T ) is recovered in the classical limit.

(b) What happens to χ(T ) as the temperature tends to the critical Bose-Einstein con-
densation temperature from above (T → Tc + 0)? Sketch χ(T ).

(c) At T < Tc and for a given B, which quantum state will be macroscopically occupied?
Taking B → +0 (i.e., infinitesimally small), calculate the spontaneous magnetisation of
the system, M0(n, T ) = limB→0M(n, T,B), as a function of n and T . Explain why the
magnetisation is non-zero even though B is vanishingly small. Does the result of (b)
make sense in view of what you have found?

R.4 Creation/Annihilation of Matter. When the number of particles N in an ideal gas is
fixed, its chemical potential µ is determined implicitly from an equation that relates N
to µ, the gas volume V , its temperature T , and the spin s and mass m of the particles.
Now, instead of fixing the number of particles, let us include them into the energy budget
of our system (energy cost of making a particle is mc2). How must the formula for N
be modified?

Using the equation you have obtained, calculate the number density of an ideal gas in
equilibrium, at room temperature. Does this result adequately describe the room you
are sitting in? If not, why do you think that is?

R.5 (∗) Entropy of Fermi and Bose Gases out of Equilibrium. In this question, we will learn
how to construct the statistical mechanics for quantum ideal gases directly in terms
of occupation numbers. In the spirit of Gibbs, consider an ensemble of N copies of
our system (gas in a box). Let Ni be the number of particles that are in the single-
particle microstate i across this entire set of copies. Then the average occupation num-
ber of i per copy is ni = Ni/N . The (Boltzmann) entropy of the whole ensemble
of copies associated with a given assignment (N1, N2, . . . , Ni, . . . ) of particles to mi-
crostates is SB = ln ΩN (N1, N2, . . . ), where ΩN is the number of ways in which such an
assignment can be achieved. Then the Gibbs entropy of the set of occupation numbers
(n1, n2, . . . , ni, . . . ) will be SG(n1, n2, . . . ) = SB/N in the limit N →∞ and all Ni →∞
while keeping ni constant. This is very similar to the construction in the Lectures of the
Gibbs entropy of a set of probabilities of microstates, except we now have different rules
about how many particles can be in any given microstate i:
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— for fermions, each copy of the system in the ensemble can have only one or none of
the Ni particles available for each state i;

— for bosons, the Ni particles in each state i can be distributed completely arbitrarily
between the N copies.

(a) Prove that the Gibbs entropy, as defined above, will be

SG = −
∑
i

[ni lnni ± (1∓ ni) ln(1∓ ni)] ,

where the upper sign is for fermions and the lower for bosons.

Hint. Observe that ΩN (N1, N2, . . . ) = ΠiΩi, where Ωi is the number of ways to asign
the Ni particles available for the microstate i to the N copies in the ensemble.

Note that this formula certainly holds for Fermi and Bose gases in equilibrium as derived
in the Lectures (convince yourself that this is the case), but you have shown now is that
it also holds out of equilibrium, i.e., for arbitrary occupation numbers.

(b) Considering a system with fixed average energy and number of particles and max-
imising SG, derive from the above the Fermi-Dirac and Bose-Einstein formulae for the
mean occupation numbers in equilibrium.

(c) Devise a way to treat a classical gas by the same method.
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