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Some useful constants

Boltzmann’s constant kB 1.3807× 10−23 J K−1

Stefan–Boltzmann constant σ 5.67× 10−8 Wm−2K−4

Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 J mol−1 K−1

1 pascal (Pa) 1 N m−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105 N m−2



PROBLEM SET 6: Statistical Mechanics of Simple Systems

This Problem Set can be attempted during Weeks 4 and 5 of Hilary Term, with the tutorial
or class on this material held at the end of Week 5 or later.

Calculation of thermodynamic quantities from the partition function

6.1 Consider an array of N localised spin–1
2

paramagnetic atoms. In the presence of a
magnetic field of flux density B, the two degenerate spin states split by ±µBB, where
µB is the Bohr magneton.

(i) Derive the single-particle partition function for the system.

(ii) Show that the heat capacity CB can be written as

CB =

(
∂U

∂T

)
B

= NkB

(
θ

T

)2
eθ/T

(eθ/T + 1)2
. (1)

Show that CB has a maximum at a temperature Tmax = AµBB/kB where A is a numerical
constant. Determine A, and sketch CB as a function of θ/T .

(iii) Given that the largest static magnetic field that can easily be produced in the
laboratory is of order 10 Tesla, estimate the temperature at which the magnetic heat
capacity of such a system will be largest.

6.2 An array of N 1D simple harmonic oscillators is set up with an average energy per
oscillator of (m+ 1

2
)~ω. Show that the entropy per oscillator is given by

S

NkB
= (1 +m) ln(1 +m)−m lnm. (2)

Comment on the value of the entropy when m = 0.

6.3 An assembly of N particles per unit volume, each having angular momentum J , is
placed in a magnetic field. The field splits the level into 2J + 1 different energies, given
by mJgJµBB, where mJ runs from −J to +J . gJ is known as the Landé g-factor, which
you will presently meet in atomic physics.

(i) Show that the single-particle partition function Zmag of the magnetic system can be
written as

Zmag =
sinh[(J + 1

2
)y]

sinh(y/2)
. (3)

where y = gJµBB/kBT .

(ii) Show that the susceptibility, χ, (defined as µ0M/B as B → 0) is given by

χ =
µ0Ng

2µ2
BJ(J + 1)

3kBT
. (4)

Prove that this is consistent with the result derived in lectures for a spin–1
2

paramagnet.
[N.B. In the limit of small x, cothx ≈ 1/x+ x/3]
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Diatomic gases and the equipartition theorem

6.4 Comment on the following values of molar heat capacity at constant pressure Cp in
J K−1 mol−1, all measured at 298 K.

Al 24.35
Ar 20.79
Au 25.42
Cu 24.44
He 20.79
H2 28.82
Fe 25.10

Pb 26.44
Ne 20.79
N2 29.13
O2 29.36
Ag 25.53
Xe 20.79
Zn 25.40

[Hint: express them in terms of R. Which substance is a solid and which is gaseous?]

6.5 Experimental data for the molar heat capacity of N2 as a function of temperature are
shown in the table below.

T (Kelvin) 170 500 770 1170 1600 2000 2440
CV /R 2.5 2.57 2.76 3.01 3.22 3.31 3.4

(i) Estimate the frequency of vibration of the N2 molecule.

(ii) By making a rough estimate of the moment of inertia of the molecule, comment on
the possibility of quenching the rotational degrees of freedom and hence reducing the
heat capacity of nitrogen to 3R/2 per mole.

6.6 Show that for a diatomic molecule at a temperature, T , such that θrot � T � θvib, where
θrot and θvib are its characteristic temperatures of rotation and vibration respectively,
the partition function satisfies Z ∝ V T 5/2. Hence show that pV 7/5 is a constant along
an adiabat.

Grand canonical ensemble and chemical potential

6.7 Classical Ideal Gas.

a) Starting from the grand canonical distribution, prove that the equation of state for a
classical ideal gas is P = nkBT , where n = N/V is the mean number density.

b) Find the chemical potential µ as a function of pressure P and temperature T for a
diatomic classical ideal gas whose rotational levels are excited but vibrational ones are
not. The mass of each of the two atoms in the molecule is m, the separation between
them is r.

6.8 Rotating Gas. A cylindrical container of radius R is filled with ideal gas at temperature
T and rotating around the axis with angualar velocity Ω. The molecular mass is m.
The mean density of the gas without rotation is n̄. Assuming the gas is in isothermal
equilibrium, what is the gas density at the edge of the cylinder, n(R)? Discuss the high
and low temperature limits of your result.

3



6.9 Particle Number Distribution. Consider a volume V of classical ideal gas with mean
number density n = N/V , where N is the mean number of particles in this volume.
Starting from the grand canonical distribution, show that the probability to find exactly
N particles in this volume is a Poisson distribution (thus, you will have recovered the
result you proved in PS-3 by a different method).

Multispecies systems

6.10 Ionisation-Recombination Equlibrium. Consider hydrogen gas at high enough tempera-
ture that ionisation and recombination are occurring (i.e., we are dealing with a partially
ionised hydrogen plasma). The reaction is

H ⇔ p+ + e−

(hydrogen atom becomes a proton + an electron or vice versa). Our goal is to find,
as a function of density and temperature (or pressure and temperature), the degree of
ionisation χ = np/n, where np is proton number density, n = nH + np is total number
density of hydrogen, ionised or not, and nH is the number density of the un-ionised H
atoms. Note that n is fixed (conservation of nucleons). Assume overall charge neutrality
of the system.

a) What is the relation between chemical potentials of the H, p and e gases if the system
is in chemical equlibrium?

b) Treating all three species as classical ideal gases, show that in equlibrium

nenp
nH

=

(
mekBT

2π~2

)3/2

e−R/kBT ,

where R = 13.6 eV (1 Rydberg) is the ionisation energy of hydrogen. This formula is
known as the Saha Equation.

Hint. Remember that you have to include the internal energy levels into the partition
function for the hydrogen atom. You may assume that only the ground state energy
level −R matters (i.e., neglect all excited states).

c) Hence find the degree of ionisation χ = np/n as function of n and T . Does χ
go up or down as density is decreased? Why? Consider a cloud of hydrogen with
n ∼ 1 cm−3. Roughly at what temperature would it be mostly ionised? These are
roughly the conditions in the so called “warm” phase of the interstellar medium — the
stuff that much of the Galaxy is filled with (although the law of mass action is not
thought to be a very good approximation for interstellar medium, because it is not
exactly in equilibrium).

d) Now find an expression for χ as a function of total gas pressure p and temperature T .
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Other Ensembles

6.11 Microcanonical Ensemble Revisited. Derive the grand canonical distribution starting
from the microcanonical distribution (i.e., by considering a small subsystem exchanging
particles and energy with a large, otherwise isolated system).

Hint. This is a generalisation of the derivation in Lecture Notes 12. If you can’t figure
it out on your own, you will find the solution in Blundell & Blundell’s or Kittel’s books.

6.12 (∗) Pressure Ensemble. Throughout this course, we have repeatedly discussed systems
whose volume is not fixed, but allowed to come to some equilibrium value under pressure.
Yet, in both canonical and grand canonical ensembles, we treated volume as an external
parameter, not as a quantity only measurable in the mean. In this question, your
objective is to construct an ensemble in which the volume is not fixed.

a) Consider a system with (discrete) microstates α to each of which corresponds some
energy Eα and some volume Vα. Maximise Gibbs entropy subject to measured mean
energy being U and the mean volume V , whereas the number of particles N is exactly
fixed and find the probabilities pα. Show that the (grand) partition function for this
ensemble can be defined as

Z =
∑
α

e−βEα−σVα ,

where β and σ are Lagrange multipliers. How are β and σ determined?

b) Show that if we demand that the Gibbs entropy SG for those probabilities be equal
to S/kB, where S is the thermodynamic entropy, then the Lagrange multiplier arising
from the mean-volume constraint is σ = βP = P/kBT , where P is pressure. Thus, this
ensemble describes a system under pressure set by the environment.

c) Prove that dU = TdS − PdV .

d) Show that −kBT lnZ = G, where G is the Gibbs free energy defined in the usual
way. How does one calculate the equation of state for this ensemble?

e) Calculate the partition function Z for classical monatomic ideal gas in a container
of changeable volume but impermeable to particles (e.g., a balloon made of inelastic
material). You will find it useful to consider microstates of an ideal gas at fixed volume
V and then sum up over all possible values of V . This sum (assumed discrete) can be
converted to an integral via

∑
V =

∫∞
0
dV/∆V , where ∆V is the “quantum of volume.”

You will also need to use the formula
∫∞
0
dxxNe−x = N !

f) Calculate G and find what conditions ∆V must satisfy in order for the resulting
expression to coincide with the standard formula for the ideal gas (derived in the lectures
and Q6.7) and be independent of ∆V (assume N � 1).

g) Show that the equation of state is P = nkBT , where n = N/V .
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