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PROBLEM SET 5: Foundations of Statistical Mechanics

If you want to try your hand at some practical calculations first, start with the Ideal Gas questions

Maximum Entropy Inference

5.1 Factorials. a) Use your calculator to work out ln 15! Compare your answer with the
simple version of Stirling’s formula (lnN ! ≈ N lnN − N). How big must N be for the
simple version of Stirling’s formula to be correct to within 2%?

b∗) Derive Stirling’s formula (you can look this up in a book). If you figure out this
derivation, you will know how to calculate the next term in the approximation (after
N lnN −N) and therefore how to estimate the precision of lnN ! ≈ N lnN −N for any
given N without calculating the factorials on a calculator. Check the result of (a) using
this method.

5.2 Tossing coins and assigning probabilities. This example illustrates the scheme for as-
signment of a priori probabilities to microstates, discussed in the lectures.

Suppose we have a system that only has two states, α = 1, 2, and no further information
about it is available. We will assign probabilities to these states in a fair and balanced
way: by flipping a coin N � 1 times, recording the number of heads N1 and tails N2

and declaring that the probabilities of the two states are p1 = N1/N and p2 = N2/N .

a) Calculate the number of ways, W , in which a given outcome {N1,N2} can happen,
find its maximum and prove therefore that the most likely assignment of probabilities
will be p1 = p2 = 1/2. What is the Gibbs entropy of this system?

b) Show that for a large number of coin tosses, this maximum is sharp. Namely, show
that the number of ways W (m) in which you can get an outcome with N /2−m heads
(where N � m� 1) is

W (m)

W (0)
≈ exp

(
−2m2/N

)
,

where W (0) corresponds to the most likely situation found in (a) and so the relative
width of this maximum is δp = m/N ∼ 1/

√
N .

Hint. Take logs and use Stirling formula.

5.3 Loaded die. Imagine throwing a die and attempting to determine the probability dis-
tribution of the outcomes. There are 6 possible outcomes: α = 1, 2, 3, 4, 5, 6; their
probabilities are pα.

a) If we know absolutely nothing and believe in maximising entropy as a guiding princi-
ple, what should be our a priori expectation for pα? What then do we expect the average
outcome 〈α〉 to be?

b) Suppose someone has performed very many throws and informs us that the average
is in fact 〈α〉 = 3.667. Use the principle of maximum entropy to determine all pα.
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Hint. You will find the answer (not the solution) in J. Binney’s lecture notes. This is a
good opportunity to verify your solution. To find the actual probabilities, you may have
to find the root of a transcendental equation — this is easily done on the computer or
even on an advanced calculator.

Canonical Ensemble

5.4 Heat Capacity, Thermal Stability and Fluctuations.

a) Derive the general expression for heat capacity at constant volume, CV , in terms of
derivatives of the partition function Z(β) with respect to β = 1/kBT .

b) Use the partition function of the monatomic ideal gas to check that this leads to the
correct expression for its heat capacity.

c) From the result of (a), show that CV ≥ 0 (so thermal stability, derived in Lecture
Notes 10, is not in peril).

d) In (c), you should have obtained an expression that relates CV to mean square devia-
tion (or variance, or fluctuation) of the exact energy of the system from its mean value,
〈∆E2〉 = 〈(Eα − U)2〉. Show that 〈∆E2〉/U2 → 0 as the size of the system →∞.

5.5 Elastic chain. A very simplistic model of an elastic chain is illustrated above. This is a
1D chain consisting of N segments, each of which can be in one of two (non-degenerate)
states: horizontal (along the chain) or vertical. Let the length of the segment be a when
it is horizontal and 0 when it is vertical. Let the chain be under fixed tension γ and so
let the energy of each segment be 0 when it is horizontal and γa when it is vertical. The
temperature of the chain is T .

a) What are the microstates of the chain? Treating the chain using the canonical en-
semble, work out the single-segment partition function and hence the partition function
of the entire chain.

b) Work out the relationship between mean energy U and mean length L of the chain and
hence calculate the mean length as a function of γ and T . Under what approximation
do we obtain Hooke’s law: L = L0 + Aγ/T , where L0 and A are constants?

c) Calculate the heat capacity for this chain and sketch it as a function of temperature.
Why physically does the heat capacity vanish both at small and large temperatures?

d) Negative temperature. If you treat the mean energy U of the chain as given and
temperature as the quantity to be found, you will find that temperature can be negative!
Determine under what conditions this happens. Why is this possible in this system and
not, say, for the ideal gas? Why does the stability argument from Lecture Notes 10 not
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apply here? Where else in this problem set have you encountered negative temperature
and why was it OK there?

e∗) Superfluous constraints. This example illustrates that if you have more measurements
and so more constraints, you do not necessarily get a different statistical mechanics (so
the maximum entropy principle is less subjective than it might seem).

So far we have treated our chain as a canonical ensemble, i.e., we assumed that the
only constraint on probabilities would be the mean energy U . Suppose now that we
have both a thermometer and a ruler and so wish to maximise entropy subject to two
constraints: the mean energy is U and also the mean length of the chain is L. Do this
and find the probabilities of the microstates α of the chain as functions of their energies
Eα and corresponding chain lengths `α. Show that the maximisation problem only has
a solution when U and L are in a specific relationship with each other — so the new
constraint is not independent and does not bring in any new physics. Show that in this
case one of the Lagrange multipliers is arbitrary (and so can be set to 0 — e.g., the one
corresponding to the constraint of fixed L; this constraint is superfluous so we are back
to the canonical ensemble).

Classical Monatomic Ideal Gas

5.6 Consider a classical ideal monatomic gas of N spinless particles of mass m in a volume
V at a temperature T .

a) Find a formula for its partition function. Show that if particles in the gas were
distinguishable, the entropy would be a non-extensive (non-additive) function. Why is
this a problem? Show that if indistinguishability is properly accounted for, this problem
disappears. Under what assumption is it OK to use a simple 1/N ! compensating factor
to account for indistinguishability?

b) Consider two equal volumes containing two classical ideal gases at the same temper-
ature and pressure. Find the entropy change on mixing the two gases (i) when the gases
are identical, and (ii) when they are different. If the answers for these two cases are
different (or otherwise), explain why that makes physical sense.

c) Using the explicit expression for the entropy of the classical ideal monatomic gas in
equilibrium, show that for such a gas undergoing an adiabatic process, PV 5/3 = const.

5.7 Relativistic Ideal Gas.

a) Show that the equation of state of an ideal gas is still PV = NkBT even when the
gas is heated to such a high temperature that the particles are moving at relativistic
speeds. Why is it unchanged?

b) Although the equation of state does not change when the particles in a monatomic
ideal gas start to move at relativistic speeds, show that in the formula for an adiabat,
PV γ = const, the exponent γ in the relativistic limit is 4

3
, rather than 5

3
as in the non-

relativistic case. You can assume that the particles are ultrarelativistic, i.e., their rest
energy is negligible compared to their kinetic energy.

c) Show that for such a gas, pressure p = ε/3, where ε is the internal energy density. Is
it different than for a non-relativistic gas? Why?
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5.8 Density of States.

a) Consider a particle living in a 2D box. What is the density of states g(k) for it? What
is g(k) for a particle in a 1D box?

b∗) Calculate the density of states in a d-dimensional box.

Hint. You will need to calculate the area of a unit sphere in d dimensions (the full solid
angle in d dimensions). You have done it before (Q3.3d, last term). You can look it up
somewhere (e.g., in Kardar’s book) or figure it out yourself.

Some Useful Constants

Boltzmann’s constant kB 1.3807× 10−23 J K−1

Proton rest mass mp 1.6726× 10−27 kg
Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 J mol−1 K−1

1 pascal (Pa) 1 N m−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105 N m−2

5


