
Statistical Physics

xford

hysics

Second year physics course

Dr A. A. Schekochihin and Prof. A. Boothroyd

(with thanks to Prof. S. J. Blundell)

Problem Set 3: Kinetic Theory



Introductory Note from A. Schekochihin

Lectures

In Michaelmas, I will teach Kinetic Theory, after Professor Andrew Boothroyd has covered
Basic Thermodyanmics.

I will not be following any single book, so I advise you to attend lectures and take notes (a very
useful skill to learn as early as possible!). I will make my hand-written notes available via the
course webpage, http://www-thphys.physics.ox.ac.uk/people/AlexanderSchekochihin/A1/,
but they are just that — my hand-written notes for the lectures — and so come with no
guarantee of legibility or book-level transparency of structure. I do of course hope
that you might find them helpful, but whether you do or not, you must not regard them as the
sole source to learn from.

Oxford has 99 libraries and you are missing out if you have not yet become an avid explorer
of the world of books. Learning a subject and making sense of it from a variety of sources is
an essential part of high education — and indeed it is part of the thrill of one’s intellectual
formation to find that you are free to decide whom you believe and what does and doesn’t make
sense. I will give you reading suggestions, both specific ones based on the Reading List, and
others, designed for you to explore the subject laterally or in more depth — but don’t stop
there, you do not want to be intellectual clones of me, so make your own decisions what to
read!

Of the books on the Reading List, I particularly like Blundell & Blundell, Pauli, Schrödinger,
and Landau & Lifshitz. The first two are on the undergraduate level, the third does not
deal with Kinetic Theory and will become relevant in HT, and “Landaushitz”—Vol. 10 does
everything on a very high level of analytical sophistication, so reading it would be a challenge
and you should not despair if you find it too hard. If you prefer a much more ponderous and
meticulously precise mathematical treatment in the old Cambridge style, Chapman & Cowling
can be your bible of Kinetic Theory. This said, I’ll do it all largely my way.

The course will be quite mathematical, possibly more so than you have so far experienced. But
physics has been a mathematical subject since Newton and Leibniz and we would be moving
backwards if we did it A-level style. Learning to describe and predict Nature mathematically
is one of the most impressive achievements of our civilisation. So become civilised!

Please ask questions during the lectures or by email (to a.schekochihin1@physics.ox.ac.uk).
This is only the second time I am teaching this material and will appreciate real-time feedback.

Problem Sets

Problem Set 3 covers the material of Lectures 1-2. Start working on it at the end of Week 6.

Problem Set 4 will cover the rest of Kinetic Theory and is intended as vacation work.

Questions that may prove difficult — probably more so than anything you are likely to face
in an exam — or that deal with lateral issues are marked with (∗). Skip them if you must,
although I do hope you will relish the challenge rather than seek the minimum-energy state.
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PROBLEM SET 3: Particle Distributions

Calculating Averages

3.1 a) If θ is a continuous random variable which is uniformly distributed between 0 and π,
write down an expression for p(θ). Hence find the value of the following averages:

(i) 〈θ〉
(ii) 〈θ − π

2
〉

(iii) 〈θ2〉
(iv) 〈θn〉 (for the case n ≥ 0)

(v) 〈cos θ〉

(vi) 〈sin θ〉
(vii) 〈| cos θ|〉
(viii) 〈cos2 θ〉
(ix) 〈sin2 θ〉
(x) 〈cos2 θ + sin2 θ〉

Check that your answers are what you expect.

b) If particle velocities are distributed isotropically, how are their angles distributed?
Is the angle between the velocity vector and a fixed axis (chosen by you) distributed
uniformly? Why? Answer these questions for the case of a 2- and 3-dimensional world.

3.2 a) Consider an isotropic distribution of particle velocities: f(v) = f(v), where v = |v|
is the particle speed. In 3D, what is the distribution of the speeds, f̃(v)?

Please note that the notation I use is different from Blundell & Blundell: f(v)d3v is
velocity distribution in 3D, normalised to 1; when it is isotropic, f(v) = f(v) (same
letter used, f , although if I had been more mathematically fastidious, I would have used
a different letter); the speed distribution is f̃(v)dv. In contrast, Blundell & Blundell use
f(v) for the speed distribution and g(v) for velocity distribution.

b) Calculate the following averages of velocity components in terms of averages of speed
(〈v〉, 〈v2〉, etc.)

(i) 〈vi〉, where i = x, y, z

(ii) 〈|vi|〉, where i = x, y, z

(iii) 〈v2i 〉, where i = x, y, z

(iv) 〈vivj〉, where i, j = x, y, z (any index can designate any of the components)

(v) 〈vivjvk〉, where i, j = x, y, z

You can do them all by direct integration with respect to angles, but think carefully
whether this is necessary in all cases. You may be able to obtain the answers in a
quicker way by symmetry considerations (being lazy often spurs creative thinking).

Hint for (iv). Here is a smart way of doing this. 〈vivj〉 is a symmetric rank-2 tensor (i.e.,
a tensor, or matrix, with two indices). Since the velocity distribution is isotropic, this
tensor must be rotationally invariant (i.e., not change under rotations of the coordinate
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frame). The only symmetric rank-2 tensor that has this property is a constant times
Kronecker delta δij. So it must be that 〈vivj〉 = Cδij, where C can only depend on the
distribution of speeds v (not vectors v). Can you figure out what C is? Is it the same in
2D and in 3D? This is a much simpler derivation than doing velocity integrals directly,
but it is worth checking the result by direct integration to convince yourself that the
symmetry magic works.

c∗) Calculate 〈vivjvkvl〉, where i, j, k, l = x, y, z (any index can designate any of the
components) — in terms of averages of powers of v.

Hint. Doing this by direct integration is a lot of work. Generalise the symmetry argu-
ment given above: see what symmetric rotationally invariant rank-4 tensors (i.e., tensors
with 4 indices) you can cook up: it turns out that they have to be products of Kronecker
deltas, e.g., δijδkl; what other combinations are there? Then 〈vivjvkvl〉 must be a linear
combination of these tensors, with coefficients that depend on some moments (averages)
of v. By examining the symmetry properties of 〈vivjvkvl〉, work out what these coeffi-
cients are (if you have done question b(iv) above, you’ll know what to do). How does
the answer depend on the dimensionality of the world (2D, 3D)?

3.3 The probability distribution of molecular speeds in a gas in thermal equilibrium is a
Maxwellian: a molecule of mass m will have a velocity in a 3-dimensional interval [vx, vx+
dvx]× [vy, vy + dvy]× [vz, vz + dvz] (denoted d3v) with probability

f(v)d3v ∝ e−v
2/v2thd3v,

where vth =
√

2kBT/m is the “thermal speed,” T temperature, kB Boltzmann’s constant,
and I have used the proportionality sign (∝) because the normalisation constant has been
omitted (work it out by integrating f(v) over all velocities).

a) Given the Maxwellian distribution, what is the distribution of speeds, f̃(v)? Calculate
the mean speed 〈v〉 and the mean inverse speed 〈1/v〉. Show that 〈v〉〈1/v〉 = 4/π.

b) Calculate 〈v2〉, 〈v3〉, 〈v4〉, 〈v5〉.
c∗) Work out a general formula for 〈vn〉. What is larger, 〈v27〉1/27 or 〈v56〉1/56? Do you
understand why that is, qualitatively?

Hint. Consider separately odd and even n. Use
∫∞
−∞ dxe

−x2 =
√
π. [These things are

worked out in Blundell & Blundell, but do try to figure them out yourself!]

d∗) What is the distribution of speeds f̃(v) in an n-dimensional world (for general n)?

Pressure

3.4 Remind yourself how one calculates pressure from a particle distribution function. Let
us consider an anisotropic system, where there exists one (and only one) special direction
in space (call it z), which affects the distribution of particle velocities (an example of
such a situation is a gas of charged particles in a straight magnetic field).

a) How many variables does the distribution function now depend on? (Recall that in
the isotropic case, it depended only on one, v.) Write down the most general form of the
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distribution function under these symmetries — what is the appropriate transformation
of variables from (vx, vy, vz)?

b) What is the expression for pressure p‖ (in terms of averages of those new velocity
variables) that the gas will exert on a wall perpendicular to the z axis? (It is called p‖
because it is due to particles whose velocities have non-zero projections onto the special
direction z.) What is p⊥, pressure on a wall parallel to z?

c) Now consider a wall with a normal n̂ at an angle θ to z. What is the pressure on this
wall in terms of p‖ and p⊥?

Effusion

3.5 a) Show that the number of molecules hitting unit area of a surface per unit time with
speeds between v and v + dv and angles between θ and θ + dθ to the normal is

dΦ̃(v, θ) =
1

2
nvf̃(v)dv sin θ cos θ dθ,

where f̃(v) is the distribution of particle speeds.

b) Show that the average value of cos θ for these molecules is 2
3
.

c) Using the results above, show that for a gas obeying the Maxwellian distribution, the
average energy of all the molecules is (3/2)kBT , but the average energy of those hiting
the surface is 2kBT .

3.6 a) A Maxwellian gas effuses through a small hole to form a beam. After a certain
distance from the hole, the beam hits a screen. Let v1 be the most probable speed of
atoms that, during a fixed interval of time, hit the screen. Let v2 be the most probable
speed of atoms situated, at any instant, between the small hole and the screen. Find
expressions for v1 and v2. Why are these two speeds different?

b) You have calculated the most probable speed (v1) for molecules of mass m which
have effused out of an enclosure at temperature T . Now calculate their mean speed 〈v〉.
Which is the larger and why?

3.7 A vessel contains a monatomic gas at temperature T . Use Maxwell’s distribution of
speeds to calculate the mean kinetic energy of the molecules.

Molecules of the gas stream through a small hole into a vacuum. A box is opened for a
short time and catches some of the molecules. Assuming the box is thermally insulated,
calculate the final temperature of the gas trapped in the box.

3.8 This question requires you to think geometrically.

a) A gas effuses into a vacuum through a small hole of area A. The particles are then
collimated by passing through a very small circular hole of radius a, in a screen a distance
d from the first hole. Show that the rate at which particles emerge from the circular hole
is 1

4
nA〈v〉(a2/d2), where n is the particle density and 〈v〉 is the average speed. (Assume

no collisions take place after the gas effuses and that d� a.)

b) Show that if a gas were allowed to leak into an evacuate sphere and the particles
condensed where they first hit the surface they would form a uniform coating.
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3.9 A closed vessel is partially filled with liquid mercury; there is a hole of area A = 10−7 m2

above the liquid level. The vessel is placed in a region of high vacuum at T = 273 K
and after 30 days is found to be lighter by ∆M = 2.4 × 10−5 kg. Estimate the vapour
pressure of mercury at 273 K. (The relative molecular mass of mercury is 200.59.)

3.10 A gas is a mixture of H2 and HD in the proportion 7000:1. As the gas effuses through
a small hole from a vessel at constant temperature into a vacuum, the composition of
the remaining mixture changes. By what factor will the pressure in the vessel have
fallen when the remaining mixture consists of H2 and HD in the proportion 700:1.
(H=hydrogen, D=deuterium)

3.11 (∗) In the previous question, you worked out a differential equation for the time evolution
of the number density of the gas in the container and then solved it (if that is not
what you did, go back and think again). The container was assumed to have constant
temperature. Now consider instead a thermally insulated container of volume V with a
small hole of area A, containing a gas with molecular mass m. At time t = 0, the density
is n0 and temperature is T0. As gas effuses out through a small hole, both density and
temperature inside the container will drop. Work out their time dependence, n(t) and
T (t) in terms of the quantities given above.

Hint. Teperature is related to the total energy of the particles in the container. Same
way you calculated the flux of particles through the hole (leading to density decreasing),
you can now also calculate the flux of energy, leading to temperature decreasing. As a
result, you will get two differential (with respect to time) equations for two unknowns,
n and T . Derive and then integrate these equations (here you will have to brush up on
what learned in your 1-st year maths course).

Thermodynamic Limit

3.12 (∗) Consider a large system of volume V containing N non-interacting particles. Take
some fixed subvolume V � V . Calculate the probability to find N particles in volume
V . Now assume that both N and V tend to ∞, but in such a way that the particle
number density is fixed: N /V → n = const.

a) Show that in this limit, the probability pN to find N particles in volume V (both N
and V are fixed, N � N ) tends to the Poisson distribution whose average is 〈N〉 = nV .

Hint. This involves proving Poisson’s limit theorem. You will find inspiration or possibly
even the solution in standard probability texts, e.g., Ya. G. Sinai, Probability Theory:
An Introductory Course (Springer 1992).

b) Prove that
〈(N − 〈N〉)2〉1/2

〈N〉
=

1√
〈N〉

(so fluctuations around the average are very small as 〈N〉 � 1).

c) Show that, if 〈N〉 � 1, pN has its maximum at N ≈ 〈N〉 = nV ; then show that in
the vicinity of this maximum,

pN ≈
1√

2πnV
e−(N−nV )2/2nV .
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Hint. Use Stirling’s formula for N ! (look it up if you don’t know what that is). Taylor-
expand ln pN around N = nV .

The result of (a) is, of course, intuitively obvious, but it is nice to be able to prove it
mathematically and even to know with what precision it holds (b) — another demonstra-
tion that the world is constructed in a sensible way.

Some Useful Constants

Boltzmann’s constant kB 1.3807× 10−23 J K−1

Proton rest mass mp 1.6726× 10−27 kg
Avogadro’s number NA 6.022× 1023 mol−1

Standard molar volume 22.414× 10−3 m3 mol−1

Molar gas constant R 8.315 J mol−1 K−1

1 pascal (Pa) 1 N m−2

1 standard atmosphere 1.0132× 105 Pa (N m−2)
1 bar (= 1000 mbar) 105 N m−2
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