Statistical and Thermal Physics

φ

Second year physics course

Dr A. A. Schekochihin and Prof. A. T. Boothroyd

Problem Set 2

Some useful constants

Boltzmann's constant
Avogadro's number
Standard molar volume
Molar gas constant 1 pascal (Pa)
1 standard atmosphere
1 bar (= 1000 mbar)
$k_{\mathrm{B}} \quad 1.3807 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$N_{\mathrm{A}} \quad 6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$22.414 \times 10^{-3} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$
$R \quad 8.315 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{Nm}^{-2}$
$1.0132 \times 10^{5} \mathrm{~Pa}\left(\mathrm{~N} \mathrm{~m}^{-2}\right)$
$10^{5} \mathrm{~N} \mathrm{~m}^{-2}$

PROBLEM SET 2: Basic Thermodynamics

Problem set 2 can be attempted in Week 6 or 7 of Michaelmas Term. There is about one-and-a-half tutorials or classes worth of material. The starred problem is more difficult.

Entropy Changes

2.1 In a free expansion of a perfect gas (also called a Joule expansion), we know U does not change, and no work is done. However, the entropy must increase because the process is irreversible. How are these statements compatible with $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$?
2.2 A mug of tea has been left to cool from $90^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$. If there is 0.2 kg of tea in the mug, and the tea has specific heat capacity $4200 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$, show that the entropy of the tea has decreased by $185.7 \mathrm{~J} \mathrm{~K}^{-1}$. How is this result compatible with an increase in entropy of the Universe?
2.3 Calculate the changes in entropy of the Universe as a result of the following processes:
(a) A copper block of mass 400 g and heat capacity $150 \mathrm{~J} \mathrm{~K}^{-1}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $10^{\circ} \mathrm{C}$;
(b) The same block, now at $10^{\circ} \mathrm{C}$, is dropped from a height of 100 m into the lake;
(c) Two similar blocks at $100^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ are joined together (hint: save time by first realising what the final temperature must be, given that all the heat lost by one block is received by the other, and then re-use previous calculations);
(d) A capacitor of capacitance $1 \mu \mathrm{~F}$ is connected to a battery of e.m.f. 100 V at $0^{\circ} \mathrm{C}$. (NB think carefully about what happens when a capacitor is charged from a battery.);
(e) The capacitor, after being charged to 100 V , is discharged through a resistor at $0^{\circ} \mathrm{C}$;
(f) One mole of gas at $0^{\circ} \mathrm{C}$ is expanded reversibly and isothermally to twice its initial volume;
(g) One mole of gas at $0^{\circ} \mathrm{C}$ is expanded adiabatically to twice its initial volume;
(h) The same expansion as in (f) is carried out by opening a valve to an evacuated container of equal volume.
2.4 A block of lead of heat capacity $1 \mathrm{~kJ} \mathrm{~K}^{-1}$ is cooled from 200 K to 100 K in two ways:
(a) It is plunged into a large liquid bath at 100 K ;
(b) The block is first cooled to 150 K in one bath and then to 100 K in another bath.

Calculate the entropy changes in the system consisting of block plus baths in cooling from 200 K to 100 K in these two cases. Prove that in the limit of an infinite number of intermediate baths the total entropy change is zero.
2.5 Two identical bodies of constant heat capacity C_{p} at temperatures T_{1} and T_{2} respectively are used as reservoirs for a heat engine. If the bodies remain at constant pressure, show that the amount of work obtainable is

$$
W=C_{p}\left(T_{1}+T_{2}-2 T_{\mathrm{f}}\right),
$$

where T_{f} is the final temperature attained by both bodies. Show that if the most efficient engine is used, then $T_{f}^{2}=T_{1} T_{2}$. Calculate W for reservoirs containing 1 kg of water initially at $100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively. (Ans: 32.7 kJ .)
(Specific heat capacity of water $=4,200 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$).
2.6* Three identical bodies are at temperatures $300 \mathrm{~K}, 300 \mathrm{~K}$ and 100 K . If no work or heat is supplied from outside, what is the highest temperature to which any one of these bodies can be raised by the operation of heat engines? ${ }^{1}$
(Ans: 400 K)

Thermodynamic potentials and calculus

2.7 [This question is just some bookwork practice and should only take a couple of minutes.]
(a) Using the first law $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$ to provide a reminder, write down the definitions of the four thermodynamic potentials U, H, F, G for a simple p - V system (in terms of $U, S, T, p, V)$, and give $\mathrm{d} U, \mathrm{~d} H, \mathrm{~d} F, \mathrm{~d} G$ in terms of T, S, p, V and their derivatives.
(b) Derive all the Maxwell relations.
2.8 (a) Derive the following general relations

$$
\begin{aligned}
\text { (i) }\left(\frac{\partial T}{\partial V}\right)_{U} & =-\frac{1}{C_{V}}\left[T\left(\frac{\partial p}{\partial T}\right)_{V}-p\right] \\
\text { (ii) }\left(\frac{\partial T}{\partial V}\right)_{S} & =-\frac{1}{C_{V}} T\left(\frac{\partial p}{\partial T}\right)_{V} \\
\text { (iii) } \quad\left(\frac{\partial T}{\partial p}\right)_{H} & =\frac{1}{C_{p}}\left[T\left(\frac{\partial V}{\partial T}\right)_{p}-V\right]
\end{aligned}
$$

In each case the quantity on the left hand side is the appropriate thing to consider for a particular type of expansion. State what type of expansion each refers to.
(b) Using these relations, verify that for an ideal gas $\left(\frac{\partial T}{\partial V}\right)_{U}=0$ and $\left(\frac{\partial T}{\partial p}\right)_{H}=0$, and that $\left(\frac{\partial T}{\partial V}\right)_{S}$ leads to the familiar relation $p V^{\gamma}=$ constant along an isentrope.
2.9 Use the First Law of Thermodynamics to show that

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{C_{p}-C_{V}}{V \beta_{p}}-p
$$

where β_{p} is the coefficient of volume expansivity and the other symbols have their usual meanings.

[^0]
Thermodynamics of non $p-V$ systems

2.10 For a stretched rubber band, it is observed experimentally that the tension f is proportional to the temperature T if the length L is held constant. Prove that:
(a) the internal energy U is a function of temperature only;
(b) adiabatic stretching of the band results in an increase in temperature;
(c) the band will contract if warmed while kept under constant tension.
[You may assume that $\left(\frac{\partial L}{\partial f}\right)_{T}>0$.]
2.11 For a fixed surface area, the surface tension of water varies linearly with temperature from $75 \times 10^{-3} \mathrm{~N} \mathrm{~m}^{-1}$ at $5^{\circ} \mathrm{C}$ to $70 \times 10^{-3} \mathrm{Nm}^{-1}$ at $35^{\circ} \mathrm{C}$. Calculate the surface contributions to the entropy per unit area and the internal energy per unit area at $5^{\circ} \mathrm{C}$.
[Ans: $\left(\frac{\partial S}{\partial A}\right)_{T}=0.167 \times 10^{-3} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~m}^{-2},\left(\frac{\partial U}{\partial A}\right)_{T}=121.3 \times 10^{-3} \mathrm{~J} \mathrm{~m}^{-2}$]
An atomizer produces water droplets of diameter $0.1 \mu \mathrm{~m}$. A cloud of droplets at $35^{\circ} \mathrm{C}$ coalesces to form a single drop of water of mass 1 g . Estimate the temperature of the drop assuming no heat exchange with the surroundings. What is the increase in entropy in this process? (Specific heat capacity of water $c_{p}=4,200 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$.)
[Ans: $\Delta T=1.73 \mathrm{~K}, \Delta S=13.6 \times 10^{-3} \mathrm{~J} \mathrm{~K}^{-1}$]
2.12 The magnetization M of a paramagnetic material is given by $M=\chi B / \mu_{0}$, where B is the magnetic flux density and the susceptibility χ follows Curie's law $\chi=C / T$ with C a constant.

If the heat capacity per unit volume at constant M is $c_{M}=a / T^{2}$, show that the heat capacity per unit volume at constant B is

$$
c_{B}=\frac{a}{T^{2}}\left(1+\frac{B^{2} C}{\mu_{0} a}\right) .
$$

If a sample is initially at temperature T_{1} in an applied field of flux density B_{1}, show that the temperature after adiabatic reduction of the field to zero is

$$
T_{2}=\frac{T_{1}}{\left(1+\frac{B_{1}^{2} C}{\mu_{0} a}\right)^{1 / 2}} .
$$

[^0]: ${ }^{1}$ If you set this problem up correctly you may have to solve a cubic equation. This looks hard to solve but in fact you can deduce one of the roots [hint: what is the highest temperature of the bodies if you do nothing to connect them?]

