Neutrino Masses and Lepton Flavour violating decays in the MSSM

Steven Rimmer

Institute of Particle Physics Phenomenology,

University of Durham

A supersymmetric standard model

Find the most general Lagrangian which is

- invariant under Lorentz, $SU(3)_C \times SU(2)_L \times U(1)_Y$ and supersymmetry transformations; renormalizable
- minimal in particle content

Neither lepton number (L) nor baryon number (B) are conserved Two options:

- constrain Lagrangian parameters
- impose a further discrete symmetry when constructing the lagrangian

Superpotential

The most general superpotential is given by

 $\mathcal{W} = Y_E L H_1 E + Y_D H_1 Q D^c + Y_U Q H_2 U^c - \mu H_1 H_2$

$$+\frac{1}{2}\lambda LLE^{c} + \lambda' LQD^{c} - \kappa LH_{2} \\ +\frac{1}{2}\lambda'' U^{c}D^{c}D^{c}$$

Dreiner et al, building on work of Ibanez & Ross, show that there are three preferred discrete symmetries; R-parity, a Z_3 allowing $\not L$ and P_6 , referred to as proton-hexality.

Neutrino Masses in *L*-MSSM

The mixing between neutrinos and neutral gauginos/higgsinos produces one tree-level, 'see-saw' suppressed, neutrino mass.

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{\nu}^{\text{tree}} \end{array}\right)$$

where

$$m_{\nu}^{\text{tree}} = \left| \frac{v_d^2 \left(M_1 g_2^2 + M_2 g^2 \right)}{4 \text{Det}[M_{\chi^0}]} \right| \left(|\kappa_1|^2 + |\kappa_2|^2 + |\kappa_3|^2 \right)$$

A. S. Joshipura and M. Nowakowski, Phys. Rev. D 51, 2421 (1995)
 M. Nowakowski and A. Pilaftsis, Nucl. Phys. B 461, 19 (1996)

Neutrino Masses in *L*-MSSM

- Loop corrections lift the degeneracy between the two massless neutrinos.
- The neutrino masses, and hence mass squared differences, are dependent on the values of lepton number violating couplings.
- Values for lepton violating couplings exist which reproduce experimental results for mass squared differences and mixing angles.

F. M. Borzumati et al, Phys. Lett. B 384, 123 (1996); A. S. Joshipura et al, Phys. Rev. D 60, 111303 (1999)
K. Choi et al, Phys. Rev. D 60, 031301 (1999); D. E. Kaplan et al, JHEP 0001 (2000) 033
M. Hirsch et al, Phys. Rev. D 62, 113008 (2000); A. Abada et al, Phys. Rev. D 65, 075010 (2002)
Y. Grossman et al, Phys. Rev. D 69, 093002 (2004)

Neutrino masses generated via λ' couplings

A. Dedes, SR and J. Rosiek, JHEP 0608 (2006) 005

Interplay between μ -decays and neutrino masses

• In certain cases lepton number violating couplings which give rise to the mass squared differences observed in neutrino experiments will be correlated with the branching ratios for rare lepton decays.

Interplay between μ -decays and neutrino masses

Effective Operators

- LFV events can be derived in terms of effective operators, in a model independent manner.
- Leading contributions to the effective operators arise from d = 6, $SU(2)_L \times U(1)_Y$ invariant operators.
- For example, the $\tau \mu \gamma$ vertex, with an on-shell photon, arises from the following terms in the effective Lagrangian.

 $\mathcal{L}_{\text{eff}} = em_{\tau} \left[i D_L^{\gamma} \bar{\mu_L} \bar{\sigma}^{\mu\nu} \bar{\tau_R} + i D_R^{\gamma} \mu_R \sigma^{\mu\nu} \tau_L + \text{H.c.} \right] F_{\mu\nu}$

Effective Operators

 $\mathcal{L}_{\text{eff}} = em_{\tau} \left[i D_L^{\gamma} \bar{\mu_L} \bar{\sigma}^{\mu\nu} \bar{\tau_R} + i D_R^{\gamma} \mu_R \sigma^{\mu\nu} \tau_L + \text{H.c.} \right] F_{\mu\nu}$

$$\mathcal{B}(\tau \to \mu \gamma) = \frac{48\pi^3 \alpha}{G_F^2} \left[\left| D_L^{\gamma} \right|^2 + \left| D_R^{\gamma} \right|^2 \right] \mathcal{B}(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau})$$

A. Brignole and A. Rossi, Nucl. Phys. B 701 (2004) 3

Bounds

$$\begin{split} \Delta m_{\rm solar}^2 &= (7.1-8.9) \times 10^{-5} \ {\rm eV}^2 \\ |\Delta m_{\rm atm}^2| &= (1.9-3.2) \times 10^{-3} \ {\rm eV}^2 \quad ({\rm hep-ph/0606060}) \\ \mathcal{B}(\mu \to e\gamma) &< 1.2 \times 10^{-11} \quad {\rm MEGA} \ ({\rm hep-ex/0111030}) \\ \mathcal{B}(\tau \to \mu\gamma) &< 6.8 \times 10^{-8} \quad {\rm BaBar} \ ({\rm hep-ex/0502032}) \\ \mathcal{B}(\tau \to e\gamma) &< 1.1 \times 10^{-7} \quad {\rm BaBar} \ ({\rm hep-ex/0508012}) \end{split}$$

T. Schwetz, Acta Phys. Polon. B 36 (2005) 3203

M. Ahmed et al. [MEGA Collaboration], Phys. Rev. D 65, 112002 (2002)

B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 95, 041802 (2005)

B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 96, 041801 (2006)

Results

- Set all R-parity conserving parameters to SPS1a benchmark point
- Vary lepton number violating couplings
- Calculate resulting mass squared difference and branching ratio

Atmospheric Scale set by $\kappa_{1,2,3}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{0jj}|^2}{G_F^2 m_i^2} \frac{e^2}{s_w^2} M_{\chi^0}^2 \left[\left(\frac{1}{M_{H^-}^2} \right) \left(\frac{\mu_0 \mu_i}{M_{\chi^\pm}^2} \right) \left(\frac{\mu_j g_2 v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) \left(\frac{\mu_j g_2 v_u}{M_{\chi^0}^2} \right) \left(\frac{\mu_j g_2 v_u}{M_{\chi^0$$

SR hep-ph/0610406

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi^0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) + \frac{1}{2} \left[\frac{1}{m_{\tilde{e}}^2} \left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) + \frac{1}{2} \left[\frac{1}{m_{\tilde{e}}^2} \left(\frac{1}{m_{\tilde{e}}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) + \frac{1}{2} \left[\frac{1}{m_{\tilde{e}}^2} \left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{1}{m_{\tilde{e}}^2}$$

SPS1a benchmark point: $m_{\tilde{\mu}}=143 {\rm GeV}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi^0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

 $m_{\tilde{\mu}} = 145 \text{GeV}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi 0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi 0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

 $m_{\tilde{\mu}} = 265 {\rm GeV}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi 0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi 0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi^0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi^0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi^0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

1.2× 10⁻⁴

1.1×10⁻⁴

1× 10⁻⁴

9× 10⁻⁵

8× 10⁻⁵

7× 10⁻⁵

6× 10⁻⁵

 $\Delta m^2_{sol}[eV^2]$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{ikk}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} M_{\chi^0}^2 \left[\left(\frac{1}{m_{\tilde{e}}^2} \right) \left(\frac{\mu_k g v_u}{M_{\chi^0}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda'_{ikk}|^2}{G_F^2 m_i^2} \left| (Y_U)_{kk} \right|^2 m_{u_k}^2 \left[3 \left(\frac{1}{m_{\tilde{d}}^2} \right) \left(\frac{\mu_k m_{e_k}}{m_{\chi^{\pm}}^2} \right) \left(\frac{\mathcal{M}_{\tilde{d} \ LR}^2}{\mathcal{M}_{\tilde{d} \ R}^2 - \mathcal{M}_{\tilde{d} \ L}^2} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) ,$$

Atmospheric scale $\kappa_{1,2,3}$ – Solar scale B_i

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda_{0jj}|^2}{G_F^2 m_i^2} \frac{e^2}{c_w^2} \left[\left(\frac{1}{m_{H^+}^2} \right) \left(\frac{B_i}{m_{H^+}^2} \right) \left(\frac{\mu_j g v_u}{m_{\chi 0}} \right) \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

Atmospheric scale $\lambda'_{1kk,2kk,3kk}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda'_{ikk}|^2 |\lambda'_{jkk}|^2}{G_F^2} \left[\frac{1}{3} \frac{1}{m_{\tilde{u}}^2} \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) \,.$$

Atmospheric scale $\lambda'_{1kk,2kk,3kk}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda'_{ikk}|^2 |\lambda'_{jkk}|^2}{G_F^2} \left[\frac{1}{3} \frac{1}{m_{\tilde{u}}^2} \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) \ .$$

Atmospheric scale $\lambda'_{1kk,2kk,3kk}$ – Solar scale $\lambda'_{1jj,2jj,3jj}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda'_{ikk}|^2 |\lambda'_{jkk}|^2}{G_F^2} \left[\frac{1}{3} \frac{1}{m_{\tilde{u}}^2} \right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j) \ .$$

Atmospheric scale $\lambda'_{1kk,2kk,3kk}$ – Solar scale $\lambda'_{1jj,2jj,3jj}$

$$\Gamma(l_i \to l_j \gamma) \approx \frac{3}{(4\pi)^2} \frac{|\lambda'_{ikk}|^2 |\lambda'_{jkk}|^2}{G_F^2} \left[\frac{1}{3} \frac{1}{m_{\tilde{u}}^2}\right]^2 \Gamma(l_i \to l_j \nu_i \bar{\nu}_j)$$

Summary and Conclusions

- The one-loop corrections to the neutrino masses in the *L*-MSSM have been calculated, and it has been shown that the current values for mass squared differences and leptonic mixing angles can be reproduced.
- In some cases, the operators which determine neutrino masses, either at tree or loop level, will also give rise to observable flavour violating leptonic decays.
- When one neutrino mass is generated at tree level and a single λ coupling sets the solar scale, $\lambda_{211,122}$ are excluded for SPS1a. Neutrino masses set stronger bounds on the values for the λ' and bilinear soft breaking terms, however.
- If trilinear couplings set both neutrino scales, rare lepton decays set bounds on the set $\{\lambda'_{111,211,311}\}$.