

FOR Experimentalists

Steve Biller, Oxford

PMNS Neutrino Mixing Matrix

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

CKM Quark Mixing Matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} U_{ud} & U_{us} & U_{ub}\\ U_{cd} & U_{cs} & U_{cb}\\ U_{td} & U_{ts} & U_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

PMNS Neutrino Mixing Matrix

Knowing the size of $sin\theta_{13}$ is the next step and will set the roadmap for how to proceed

"Off Axis" V Beams

- Take advantage of Lorentz Boost and 2-body decays
- Concentrate v_{μ} flux at one energy
- Lower NC and v_e backgrounds at that energy (3-body decays)

Oscillation Probability: $P(v_{\mu} \rightarrow v_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$

where

$$P_{1} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$$

$$P_{2} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2}$$

$$P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = \mp J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

- dependence in $sin(2\theta_{23})$, $sin(\theta_{23}) \rightarrow 2$ solutions
- dependence in sign(Δm_{13}^2) \rightarrow 2 solutions
- δ -CP phase $\pm [0, 2\pi] \rightarrow$ interval of solutions

$P(v_{\mu} \rightarrow v_{\epsilon}) \sim \frac{1}{2} (\sin^2 2\theta_{13} - \frac{1}{10} \sin 2\theta_{13} \sin \delta)$

 $\alpha \Rightarrow 5 \times \sin 2\theta_{13}$

 $P(v_{\mu} \rightarrow v_{\epsilon}) \sim \frac{\alpha}{50} (\alpha - \frac{1}{2} \sin \delta)$ $0 < \alpha < 2$ $0 < \sin \delta < 1$

Reactor Neutrinos

No θ_{23} ambiguity; No δ –CP effects; No matter effects; Minimal dependence on Δm_{12}^2

Best current constraint: Chooz

for $\Delta m_{atm}^2 = 2 \ 10^{-3} \ eV^2$ $\sin^2(2\theta_{13}) < 0.2$ (90% C.L)

- France
 - Detector Mechanics
 - Digitization/DAQ
 - Near and Far Laboratory Infrastructure
 - Technical Coordination and detector integration
- Germany
 - Scintillators
 - Purification and fluid handling systems
 - Inner muon veto
 - Level 1 trigger System
- UK (Oxford & Sussex)
 - PMT Concentrators
 - LED Calibration System

- Japan
 - PMTs
- Spain
 - Inner detector Photo detection and mechanics
- Russia
 - Simulation and Calibration
 - Scintillator Development
- USA
 - Front End Electronics
 - Calibration system
 - Slow control system
 - Outer Muon Veto system

Site in Ardennes, France

Far site

Near site

Start of integration 2006

Available end of 2008

Detector layout

Detector dimensions have been frozen

Systematic Errors

		Chooz		Double Chooz
Reactor- induced	ν flux and σ	1.9 %	<0.1 %	Two "identical" detectors, Low bkg
	Reactor power	0.7 %	<0.1 %	
	Energy per fission	0.6 %	<0.1 %	
Detector - induced	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter
	Volume	0.3 %	0.2 %	Same weight sensor for both det.
	Density	0.3 %	<0.1 %	Accurate T control (near/far)
	H/C ratio & Gd concentration	1.2 %	<0.1 %	Same scintillator batch + Stability
	Spatial effects	1.0 %	<0.1 %	"identical" Target geometry & LS
	Live time	few %	0.25 %	Measured with several methods
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	
	Total	2.7 %	< 0.6 %	

Provides a simple, adaptable system for non-intrusive, *in situ* calibration with elements fixed in a well-defined, stable geometry

Continuously monitor detector stability

Calibrate relative PMT timing

Study optical characteristics at different wavelengths

Expected Milestones

 $\Delta m^2_{atm} = 2.5 \ 10^{-3} \ eV^2$ (with 20% uncertainty)

2007: assembly of far detector on site
2008: data taking with far detector

Start of Near lab building

2009: assembly of near detector
2010: data taking with 2 detectors

