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Preamble

We will be discussing the Navier Stokes equation

ρ{∂u

∂t
+ (u · ∇)u} = −∇p+ η∇2u. (1)

It is amazing that such a seemingly simple equation can be used to describe
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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to cite references which can be used as entries to the literature.

II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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how fluids move across an enormous range of length scales.
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A The Navier-Stokes Equation

A.1 Vectors: reminders and identities

gradφ ≡ ∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
div u ≡ ∇ · u =

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

curl u ≡ ∇ ∧ u =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

ux uy uz

∣∣∣∣∣∣
∇2φ =

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

∇2u is a vector with components
(
∇2ux,∇2uy,∇2uz

)
(u · ∇)u is a vector with x-component(

ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z

)
ux, etc.

N.B.1 these formulas are different in different co-ordinate systems — see e.g.
Acheson appendix.

N.B.2 there are lots of useful vector identities

e.g. ∇(F ·G) = F ∧ (∇∧G) + G ∧ (∇∧ F) + (F · ∇)G + (G · ∇)F

— also listed in Acheson appendix

Divergence theorem ∫
S

u · n̂ dS =

∫
V

∇ · u dV (2)

where S is the closed surface surrounding a volume V .

An equivalent statement of the divergence theorem is∫
S

φn̂ dS =

∫
V

∇φ dV. (3)
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Stokes theorem ∮
C

u · ds =

∫
s

(∇∧ u) · n̂ dS

where S is an open surface spanning a closed curve C.

A.2 Continuity equation

The continuity equation is a statement of conservation of mass.

Consider a volume V . Conservation of mass implies:

decrease of mass in V = total mass flux out of V

− ∂

∂t

∫
ρ dV =

∫
S

ρu · n̂ dS

− ∂

∂t

∫
ρ dV =

∫
V

∇ · (ρu) dV

This is true for all V ⇒
∂ρ

∂t
+∇ · (ρu) = 0.

If the fluid is incompressible, ρ is constant so

∇ · u = 0.

(Incompressible implies that pressure variations in the flow do not significantly
alter the density. Liquids have a small compressibility so this is usually a very
a good approximation. For gases it is not so obvious, but often the pressure
variations are sufficiently small that it remains a good approximation. The
quantitative criterion is Ma = u/cs � 1, where Ma is the Mach number, u is
the flow speed, and cs is the speed of sound. See eg Tritton 5.8.)

A.3 Material derivative

Let f be a quantity associated with a ‘fluid particle’. How does it change with
time?

Df

Dt
=

d

dt
f (x(t), y(t), z(t), t) .
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Therefore, using the chain rule,

Df

Dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
+
∂f

∂t

= ux
∂f

∂x
+ uy

∂f

∂y
+ uz

∂f

∂z
+
∂f

∂t

= (u · ∇)f +
∂f

∂t
.

Df

Dt
is called the material derivative, the rate of change of f following the fluid.

Physically the material derivative is the rate of change of f that an observer
moving with the fluid would measure at any particular location in space and
instant in time where the derivative is evaluated.

So the acceleration of a fluid particle is

Du

Dt
=
∂u

∂t
+ (u · ∇)u.

An example of the acceleration of a particle in a steady (∂u∂t = 0) flow:

(constant ρ)
u larger here

Du

Dt
6= 0 even though

∂u

∂t
= 0.

A.4 Euler equation

The Euler equation is a statement of conservation of momentum (ie Navier-
Stokes with zero viscosity).
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Newton’s law for a fluid element (assuming an incompressible fluid so ρ is con-
stant) is

“mass × acceleration” =

∫
V

ρ
Du

Dt
dV

“force” = −
∫
S

pn̂ dS +

∫
V

f dV

= −
∫
V

∇p dV +

∫
V

f dV

where we have used the divergence theorem, eq. (3), p is the pressure and f is
a force per unit volume, sometimes called a body force.

True for all V so

ρ
Du

Dt
= −∇p+ f

or, equivalently,
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+, f

ρ
.

NB if the force is gravity

f

ρ
= −gk

(assuming k is the upwards unit vector).

A.5 Viscosity and the Navier-Stokes equation

. . . but there are other forces acting due to velocity gradients that we have
ignored so far. Velocity gradients lead to momentum transfer, ie to forces.
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(a) the physics (cf kinetic theory)

(i) kinetic contribution to viscosity: dominant in a gas

velocity gradient
dux
dy

x

y

force is along x

molecules crossing plane from above carry more x−momentum than those cross-
ing from below

(ii) momentum transfer due to intermolecular forces

collisional contribution to viscosity:
dominant in a liquid

(b) the maths (outline only)

So far we have the Euler equation (ignoring external forces for now and writing
in component form)

∂ui
∂t

+ (u · ∇)ui = −1

ρ

∂p

∂xi
=

1

ρ

∂

∂xj
{−pδij}.
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We generalise this by writing

∂ui
∂t

+ (u · ∇)ui =
1

ρ

∂

∂xj
{σij} (4)

where σij = −pδij + η

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5)

σij is the stress tensor

η is the dynamic viscosity

σij is the ith component of the stress (force per unit area) on an element of
surface with normal in direction j.

So the ith component of stress on an element of surface area with normal n̂ is

ti = σixnx + σiyny + σiznz = σijnj

t = σn

Why does the viscous term take the form η
(
∂ui

∂xj
+

∂uj

∂xi

)
?

• must depend on velocity gradients

• we assume that gradients are small so the dominant contribution is linear
in first derivatives of the velocity

• this simple form assumes incompressibility

• the allowed combinations of gradients is restricted by symmetry (e.g. in-
terchanging i and j cannot change the physics)

Putting σij into the Navier-Stokes equation (4)

∂ui
∂t

+ (u · ∇)ui =
1

ρ

(
− ∂p

∂xi
+ η

∂

∂xj

{
∂ui
∂xj

+
∂uj
∂xi

})
.

But note that
∂

∂xj

(
∂ui
∂xj

)
= ∇2ui,

∂

∂xj

(
∂uj
∂xi

)
=

∂

∂xi

(
∂uj
∂xj

)
= 0 for an incompressible fluid.
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So, returning to vector notation,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

η

ρ
∇2u.

ν = η/ρ is the kinematic viscosity.

A.6 Comments on the validity of the Navier-Stokes equa-
tion:

1. Navier-Stokes is a continuum equation, ie it is written in terms of contin-
uous variables or fields ρ, u. We assume that we can define the variables
at a point in space at a given time ρ(r, t); u(r, r) but really we are as-
sociating them with a region in space of size l, say. If l is too small the
number of molecules in the region and their average velocity will fluctuate
widely so the continuum limit (or, equivalently, the hydrodynamic limit)
will not work. N-S appears to work well down to surprisingly small length
scales for a fluid (∼ 50 nm & below). For rarefied gases need l� λ, where
λ is the mean free path, and there are cases when N-S fails.

2.

σij = −pδij + η

(
∂ui
∂xj

+
∂uj
∂xi

)
is a constitutive relation between velocity gradients and the stress tensor.
It can be taken as the definition of a Newtonian fluid.

3. When does N-S fail.?

• viscoelastic fluids such as liquid crystals or polymer solutions have a
memory ⇒ need an extra time scale.

• steep velocity gradients mean that higher order derivatives will be
important.

• fluids that are magnetic or have free charges are described by more
complicated equations.

• if the flow of heat is important an extra temperature field is needed.

• relativistic effects are ignored.

4. Coefficients like viscosity η are numbers that need to be measured. Cal-
culating them requires a microscopic theory (like kinetic theory).
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A.7 Visualising the flow field

velocity field:
plot of vectors u(r) at time t
gives information about direction and magnitude of the flow

streamline:
curves tangent to u at time t

In steady flow (∂u∂t = 0) the streamlines do not change with time and particle
paths = streamlines.

Streamlines are given by

dx

ux
=
dy

uy
=
dz

uz

because (dx, dy, dz) is locally ∝ u.

Streamlines cannot intersect.

Each streamline gives information about local direction of the flow; and the
density of streamlines gives information about magnitude of the flow.

N.B.1 the rate of change of f of a fluid particle following the fluid is

Df

Dt
=
∂f

∂t
+ u · ∇f.

In steady flow ∂f
∂t = 0 and

Df

Dt
= u · ∇f.

In steady flow particles move along streamlines so this is the rate of change of
f along a streamline, and if

Df

Dt
= u · ∇f = 0

f is constant along a streamline (but can vary from streamline to streamline).

N.B.2 streamlines can be measured experimentally by using tracer particles
which have to be small enough not to disturb the flow but large enough that
Brownian motion is insignificant ∼ 0.5 µm.

streamtubes:
bundles of streamlines
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area A1

speed u1

area A2

speed u2

rate at which mass entering at 1 = ρ1A1u1

rate at which mass leaving at 2 = ρ2A2u2

so if the flow is incompressible

Au = constant

streamtube becomes smaller ⇔ flow accelerates

stream function ψ

Can be defined if flow is incompressible and two-dimensional by writing

ux =
∂ψ

∂y
, uy = −∂ψ

∂x

so that the incompressibility condition ∇ · u = 0 is automatically satisfied.

Why is ψ useful? Consider

(u · ∇)ψ = ux
∂ψ

∂x
+ uy

∂ψ

∂y
= 0.

ψ is constant along a streamline so finding ψ is equivalent to finding the stream-
lines.

A.8 Solving N-S in a simple geometry

First we need boundary conditions. At a solid boundary u = 0.

unormal = 0: obvious for no source or sink of fluid at the wall.
utangential = 0: not obvious but an experimental fact.

This is called a no-slip boundary condition.

We shall consider pressure-driven flow down a pipe (aka channel flow, Poiseuille
flow).
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(i) geometry:

pressure drop p0

over a length L

a
x

y

z

assume flow between 2 plates; translationally invariant in z ⇒ makes the prob-
lem 2D

(ii) the equation:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+
η

ρ
∇2u (6)

(iii) simplifying the equation:

• steady flow

∂u

∂t
= 0

• assume (motivated by symmetry arguments)

∂z ≡ 0

a flow field ux(y), uy = 0, uz = 0 so that (u · ∇)u ≡ ux ∂
∂xux = 0

so (6) simplifies to ∇p = η∇2u.

Only the x-component survives

∂p

∂x
=
p0

L
= η

d2ux
dy2

.
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(iv) integrate and put in the boundary conditions:

ux =
p0

2ηL
(y2 + C1y + C2).

ux = 0 at y = 0 and y = a so

ux =
p0

2ηL
y(y − a)

giving a parabolic flow profile.

ux(y)

x

y

NB1 In a circular pipe of radius a

ux =
p0

4Lη
(a2 − r2).

(Check using N-S in cylindrical polars.)

NB2 This solution is laminar flow (straight stream-lines).

For higher velocities it becomes unstable ⇒ turbulence.

For higher velocities end effects become important too; it takes an appreciable
length of pipe for flow to settle to its parabolic profile.

NB3 another simple laminar flow is shear flow or Couette flow.

u = 0

u = u0

a x

y

• same geometry as for Poiseuille flow
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• no pressure gradient; forcing is from boundary

We need to solve

η
d2ux
dy2

= 0 with ux = u0 at y = a, ux = 0 at y = 0.

∴ ux =
u0y

a
, a linear flow profile.

ux(y)

u0

x

y

A.9 The Reynolds number

(a) Non-dimensionalising Navier-Stokes

The N-S equation is

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u. (7)

The terms on the lhs are the intertial terms, the first term on the rhs is the
forcing term, and the second term on the rhs is the viscous term.

We define dimensionless variables

ũ =
u

U
, x̃ =

x

L

where U is a velocity scale and L is a length scale. It follows that

t̃ =
Ut

L
, ∇̃ = L∇, p̃

ρ̃
=

p

U2ρ
.

Writing N-S in terms of dimensionless variables

U2

L

∂ũ

∂t
+
U2

L
(ũ · ∇̃)ũ = −U

2

L

∇̃p̃
ρ̃

+
Uν

L2
∇̃2ũ.
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Dividing through by U2/L

∂ũ

∂t
+ (ũ · ∇̃)ũ = −∇̃p̃

ρ̃
+

ν

LU
∇̃2ũ ≡ −∇̃p̃

ρ̃
+

1

Re
∇̃2ũ

where

Re =
LU

ν

is the Reynolds number, a dimensionless number that characterises the flow.

For Re� 1, large length scales, high velocities, low viscosity, the inertial term
dominates.
For Re� 1, small length scales, low velocities, high viscosity, the viscous term
dominates.

(b) estimating the Reynolds number

stirring tea L ∼ 10−2m
U ∼ 10−1ms−1 ‘everyday’ length scales for water
ν ∼ 10−6 m2 s−1 or air correspond to quite high Re
Re ∼ 103

Niagara Falls L ∼ 10m
U ∼ 10ms−1 turbulent flow
ν ∼ 10−6 m2 s−1

Re ∼ 108

colloid L ∼ 10−6m
U ∼ 10−6ms−1 can forget about the inertial term
ν ∼ 10−6 m2 s−1

Re ∼ 10−6
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(c) examples of increasing the Reynolds number in different geome-
tries

(i) Reynold’s experiment (1883)

Poiseuille flow in a circular tube
see https://www.youtube.com/watch?v=iY1YfWAIuBY

Re / Rec laminar flow

Re ∼Rec turbulent ‘surges’ that travel with the flow

Re ' Rec turbulence - transverse mixing of the fluid

(ii) Flow over a cylinder

Figure 1: Flow over a cylinder for different Reynolds numbers. (a) Re=0.16, al-
most symmetric, (b) Re=26, eddies behind cylinder, fixed in space, (c) Re=200,
Bénard - von Karman vortex street, (d) Re=8000, turbulent wake.

(d) checking it all works for Poiseuille flow

In Section A.8 we showed that the velocity field for pressure driven flow between
two parallel plates is

ux =
p0

2ηL
y(y − a). (8)
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For a given forcing, the solution should only depend on the Reynolds number.
Let’s check that this is the case. Define dimensionless variables

ũx =
ux
U
, ỹ =

y

a

where U is a velocity scale and a is a length scale. It follows that

L̃ =
L

a
,

p̃0

ρ̃
=

p0

U2ρ
.

Writing the velocity profile (8) in terms of the dimensionless variables

Uũx =
U2p̃0aỹ(aỹ − a)

2ρ̃νL̃a
=
U2p̃0aỹ(ỹ − 1)

2ρ̃νL̃
.

Therefore

ũx =
Ua

ν

p̃0

ρ̃L̃

ỹ(ỹ − 1)

2
≡ Re p̃0

ρ̃L̃

ỹ(ỹ − 1)

2
.

p̃0/ρ̃L̃ is the dimensionless acceleration. So, for a given forcing, the solution
only depends on Re.

(e) Dynamical similarity

Flows with the same Re are identical if

• all geometrical features of the flow are scaled in the same way

• applied forces / pressure gradients are scaled appropriately

• there is no physics beyond N-S – or other dimensionless variables are
needed eg:
for compressible hydrodynamics, the Mach number, Ma=flow velocity/speed
of sound.
for a bouncing drop, the Weber number, We=kinetic energy/surface ten-
sion energy.

A.10 Vorticity

(a) definition and physical interpretation

vorticity ω = curl u
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Vorticity is useful, particularly at high Re, because of conservation theorems
which we will come to later.

An irrotational fluid or region of fluid has zero vorticity.

Vorticity is a local measure of the spin of a fluid. In 2D vorticity = 2 × (average
angular velocity of two infinitesimal, mutually perpendicular, fluid elements).
To show this:

δy	

δx	

2		x	

X	
1	

O	

If the velocity at the origin is (ux, uy) then, Taylor expanding, the velocity at
point 1 is (

ux +
∂ux
∂x

δx, uy +
∂uy
∂x

δx

)
and the velocity at point 2 is(

ux +
∂ux
∂y

δy, uy +
∂uy
∂y

δy

)
.

So the angular velocity of point 1 about O is
∂uy

∂x and the angular velocity of

point 2 about O is −∂ux

∂y . So the average angular velocity of points 1 and 2
about O is

1

2

(
∂uy
∂x
− ∂ux

∂y

)
=

1

2
curl u =

1

2
ω.

ω can be measured by putting a tiny ‘vorticity-meter’ in the flow (Figure 2).
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Small	and	light	enough	to	
not	disturb	flow	

Blob	of	point	so	can		
follow	rota8on	

Figure 2: A ‘vorticity meter’ – a device to measure the vorticity. It has to be
tiny because vorticity is a local property of the fluid.

(b) vortices
(ie things that look like whirlpools)

Consider the flow field

u = Ωf(r)θ̂ (9)

where Ω is a constant that sets the velocity magnitude and we are using cylin-
drical polar co-ordinates (Fig. 3a).
The vorticity is

ω = curl u = r−1

∣∣∣∣∣∣
r̂ rθ̂ ẑ
∂
∂r

∂
∂θ

∂
∂z

0 Ωrf(r) 0

∣∣∣∣∣∣ = Ω
r
∂
∂r{rf(r)}ẑ

which depends on f(r).

For example, if f(r) = r−1, then ω = 0. (The vorticity meter will not turn as
it moves around the vortex core (Fig. 3b).) This is a good approximation of a
bath plughole. However the zero vorticity condition must break down at r = 0
(mathematically) and in a small region around r = 0 (physically). A model for
how this can happen is the Rankine vortex (see problem set).

3D versions of the same physics are vortex tubes and smoke rings which are
stable structures at high Re (Fig. 3d).
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(a)																	(b)	
	
				(c)														(d)	

Figure 3: (a) a vortex: the flow field of Eq. (9), (b) a vortex with zero vorticity,
(c) rigid body rotation, (d) a 3D vortex ring.

If f(r) = r, u describes rigid body rotation, with angular velocity Ω (Fig. 3c),

ω =
Ω

r

∂

∂r
{r2}ẑ = 2Ωẑ.

(c) the vorticity equation

We will use the vector identities

curl grad ≡ 0, (10)

curl(∇2u) = ∇2(curl u), (11)

curl{(u · ∇)u} = (u · ∇) curl u− (curl u · ∇)u + (∇ · u) curl u. (12)

The last term on the rhs of Eq. (12) is zero for an incompressible fluid.

Starting from the N-S equation

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u,

taking the curl, and using Eqs. (10), (11), and (12),

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = ν∇2ω
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or, equivalently

Dω

Dt
= (ω · ∇)u + ν∇2ω.

In the same way as we defined streamlines and streamtubes for the velocity:

a vortex line is a line that is everywhere tangent to ω.

a vortex tube is a bundle of vortex lines.
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