Second Year Quantum Mechanics
Dr. John March-Russell
Michaelmas Term Problems

These problems cover all the material we will be studying in the lectures this
term. The Synopsis tells you approximately which problems are associated with
which lectures.

Some of the problems have a double dagger 17; they are a bit more challenging
but if you can do them you’re really on top of the subject. Some of the problems
have a single dagger {. They are straightforward extensions and applications of
things we will do in the lectures; first time round they will take you some time and
may raise difficulties that you’ll need to discuss with your tutor but in a couple
of years time they’ll seem really easy. Finally there are problems with no daggers;
these are either really easy or pretty much the same as problems we’ve done in the
lectures. If you're paying attention you should be able to do them.

There are quite a lot of these problems, more than most of you will manage to
do by the end of term, and your tutor may well tell you to do just a subset of them
to start with. However, in the end you should try them all, perhaps over the
vacation, as you will learn a great deal.

1 Photons, Matter Waves, and Orders of Magni-
tude

1. The Photoelectric Effect

A beam of ultraviolet light of wavelength A = 124 nm and intensity 1.6 X
1072 W/m? is suddenly turned on and falls on a metal surface, ejecting
electrons through the photo-electric effect. The beam has a cross-sectional
area of 107*m? and the work function of the metal is 5 eV. Estimate the time
delay before the first photoelectron appears by the following approaches:

(i) A crude estimate using classical physics is to calculate the time needed for
the work function energy to be accumulated over the area of one atom (radius
A~ 107'% m).

(ii) Lord Rayleigh showed that this is a bit pessimistic and that a better esti-

mate of the effective area (or scatlering cross section) that the atom presents
is A2. Use this to revise your estimate of the time delay.

(iii) In the quantum approach, emission can occur as soon as the first photon
arrives (why?). To obtain a time delay that can be compared to these classical
estimates, calculate the average time interval between arrival of successive
photons.



2. Generalized energy-frequency relation for photons

Einstein brilliantly hypothesised the existence of quanta (photons) of light to-
gether with the energy-frequency relation £ = Af. In a theory consistent with
special relativity this should be generalized to a relation between the energy-
momentum four-vector (K, p) and another four-vector with first component

hf. The relation is
(£,p) = (h], hk) (1)
where k is the wavevector of the electromagnetic radiation. Note that the

magnitude of the momentum part of the generalized energy-frequency relation
can be rewritten as

_h
p|

which motivated de Broglie in his definition of ‘matter waves’.

A (2)

(1) Verify that the relation (1) is consistent with the constant velocity of light
being ¢. [Hint: the relativistic energy-momentum relation for a particle of rest
mass mg is B? = (moc?)? + (pc)®. What rest mass must the photon have given
that the relativistic expression for the velocity is v = dE/dp?]

(ii) The wavelength of visible light from the sun is roughly in the band 390
to 780 nm. What is the momentum of a single photon of wavelength 600nm?
What is it’s energy? Given that the intensity of midday solar radiation im-
pinging on the Earth is roughly 1kW/m? estimate how many photons per
second your eye sees. How far away, in light years, would a sun-like star have
to be for you to see only 100 photons/second from such a star? [You may be
amused to learn that the sensors in the retina are just able to detect single
photons. However, apparently neural filters only allow a signal to pass to the
brain to trigger a conscious response when about five to ten or more arrive
within less than 0.1s. This seems to be a necessary adaptation — if we could
consciously see single photons we would experience too much visual ‘noise’ in
very low light. I am told that frogs are different!]

3. iThe Compton Effect

The experiment that provide the most direct evidence for the existence of
the photon as a quanta of light is the Compton effect. Compton discovered
that EM (X-ray) radiation scattered off the electrons in a graphite crystal
in a fashion that was not consistent with classical electromagnetic theory. In
particular not only was there a scattered component with the same wavelength
as the incomming radiation, but in addition a second component with a shifted
wavelength, with the amount of the shift depending upon scattering angle.

Following Compton we can explain the second shifted component by treating
the incomming beam of radiation as a beam of individual photons, each with
energy-momentum given by (1), and with each photon elastically scattering off
an (approximately stationary and lightly bound) target electron, with energy
and momentum seperately conserved as in a normal particle scattering process.



Thus consider a photon of initial momentum p incident upon an electron at
rest. After the collision let the photon and electon momenta be p’ and q
respectively.

(i) Write down the equations for conservation of momentum and energy and
show that the equation for the conservation of momentum may be written as

o - (%)2 N (h_f')Q PR o) (3)

c ¢ c
where [ and f’ are the frequencies of the initial and scattered photons respec-
tively, and 6 is the angle between them.

(ii) Show that the equation for the conservation of energy may be written as
g'c* = (hf — hf')* + 2m.c*(hf — hf) (4)

where m, is the electron mass, and combine with the above equation to show

that
/

1+ (hf/m.c?)(1 — cosb)’ (5)

From this form we see that for initial photon energies h f < m.c? the scattering
does not, to a good approximation, change the frequency of the radiation. In
this regime the scattering is well described by the classical electromagnetic
‘Thomson scattering’ process. Show that an alternate form of the previous

/=

equation is

h

mec

N =)= (1 —cos¥), (6)
where A and X are the wavelengths of the initial and final photons. These
formulae agree very well with the measurements of the shift in wavelength
or frequency of the second component of the scattered radiation. [Roughly
speaking the unmodified component is due to scattering by the entire atom;
more precisely the electrons that are tightly bound to the atoms in the material
of the crystal.] Is the energy of the scattered photon always reduced, increased,
or neither? Physically why?

(iii) The quantity h/(m.c) has the dimensions of a length, and is known as
the Compton length of the electron. Evaluate this length. Similarly we may
define the Compton wavelength A, of any massive particle (or bound system)
of mass M to be A\. = h/(Me¢). Evaluate this length for carbon, the atomic
constituent of graphite. Given that Compton used X-rays of wavelength 0.71
Angstrom, what are, at § = 90°, the relative shifts (X' —X)/X in the wavelength
of the incoming X-rays in the two cases of scattering off a single electron, and
scattering off a carbon atom?



4. Matter waves

The single-slit diffraction pattern for a monochromatic wave of wavelength A
incident normally on a narrow slit of width a is described (in the “Fraunhofer
region”) by the intensity

sin?[(ma/\) sin 0]

10) = lo= 73 sin 02 ")

where 6 is the deflection angle perpendicular to the incident wavefront. (We’ll
see how to derive this later in Question 5.4.)

(i) What is the value of () as § — 07

(ii) Sketch the form of () versus 6 for the particular case A = a/2. How does
the sketch change as A decreases? Show that the intensity peak centred on
6 = 0 falls to half its central intensity at

0 = sin~'(0.443)/a). (8)

(iii) Nuclear reactors provide high fluxes of neutrons with energies ~ 1072 or
107%¢V. For neutrons with an energy of 4.18 x 107 eV, what is (a) their
speed, (b) their wavelength?

(iv) In an experiment (C. G. Schull, Physical Review 179 (1969) 752-754)
neutrons of energy 4.18 x 107% eV were incident on a slit of width 5.6 um. It
was found that the full width at half maximum of the central intensity peak
(measured downstream from the slit) was 15.4 arc seconds. Is this consistent
with the above diffraction formula 7(6)?

5. The importance of &

Planck’s constant A is equal to 1.0 x 107** Js, to two significant figures. A
system (e.g. a mechanical watch) has moving parts of size d and mass m, and
the movement occurs on a characteristic timescale 7.

(i) Construct a quantity, call it S, having the same dimensions as A from d,
m and 7 (such quantities are said to have the dimensions of action). The rule
of thumb is that if S has numerical value much bigger than & then quantum
effects are negligible.

(ii) Evaluate your S and compare it to A for

a) The final stage of a turbofan engine (the thing that makes an aircraft fly;
typically the final stage turbine rotates at an incredible 30,000 rpm!).

b) The motion of a mechanical wristwatch.

c¢) A bacteria “swimming”.

(iii) Now take d to be a typical atomic size, and m to be the electron mass.
Find 7 such that your action quantity is equal to h in this case. Defining an
average velocity by v = d/7 , calculate the corresponding kinetic energy of the
electron, in eV.



6. Microscopes using waves with wavelength A can resolve objects roughly as
small as A but no smaller. Determine the kinetic energy of electrons in an
electron microscope needed to resolve

(i) a DNA molecule ( 107*m )
(ii) a proton (107" m).

[Use the de Broglie relation A = h/p; in each case consider whether you should
use the non-relativistic expression T' = p*/2m for the kinetic energy T', or the
relativistic one T+ mc? = [m?c* + c2p2]1/2.

7. (i) Calculate the de Broglie wavelength of a non-interacting gas of particles
of mass m at temperature T'. Assume that 7" is low enough so that the non-
relativistic form of kinetic energy applies, and recall that the mean linear KE
of a particle at temperature T' is 3kgT /2 where kg is Boltzmann’s constant.
Note that this wavelength Aryp (known as the ‘thermal de Broglie wavelength’)
grows as T' decreases.

(ii) Evaluate Apgp for Helium gas at room temperature (300K). Estimate the
mean spacing between He atoms in such a gas at atmospheric pressure. Do
you expect quantum effects to be important for this gas?

(iii) Estimate the mean interparticle spacing for liquid Helium near its boiling
point (4.2K with density 125 kg/m®). What is the thermal de Broglie wave-
length? Do you expect quantum effects to be important for liquid Helium?

2 Time Dependent Schrodinger Equation

The 1-D TDSE is

”‘W = (e )+ V(@) ). (9)

1. Einstein - de Broglie - Schrodinger waves

A plane wave solution of the time-dependent Schrodinger equation in one
dimension is given by

W(x,t) = Aehmmr, (10)

(i) By substituting this solution into the TDSE for the case that V(z) =0
find the relation between w and k for such waves.

(ii) The “phase velocity” v, is defined to be w/k and the “group velocity” v, is
defined to be dw/dk. Find expressions for v, and v, in terms of the “particle
velocity” defined by v = p/m. Are the results what you expect, and why?

2. Probability interpretation of the wavefunction

In Max Born’s original paper (Zeitschrift fir Physik 37 863-67 (1926)) the

sentences proposing the probability interpretation of the wavefunction read



as follows (quoting from the English translation, printed in “Quantum The-
ory and Measurement”, Edited by J A Wheeler and W H Zurek, Princeton
University Press, 1983, pages 52-55):

“If one translates this result into terms of particles, only one interpretation is
possible. @, .. (a, 3,7v) [the wavefunction for the particular problem he is con-
sidering] gives the probability *for the electron, arriving from the z-direction,
to be thrown out into the direction designated by the angles o, 3,7 ... .

* Addition in proof: More careful considerations show that the probability is
proportional to the square of the quantity ®,.,,. ”

Give as many “considerations” as you can why a general wavefunction ¢ does
not have suitable properties to be interpreted as a probability density, but the
square modulus |¢]? does.

. Continuous probability distributions

For a certain continuous variable x, the probability that it has a value lying
between x and = + dx is p(x)dx. The possible values of = range from a to b.

(i) What conditions must p(x) satisfy?
(ii) Define the average value (f(z)) of a function of z, f(z).

(iii) The variance of the distribution is o, defined by ¢* = ((z — (x))*). Show
that o2 = (z?)—({z))%. (A customary measure of the “spread” of a distribution
is o, which by the above result is equal to [(z2) — ({z))?]'/2. Frequently this
may be written as Ax.)

. Solutions of the TDSE separated in = and ¢

Consider solutions in which the z- and ¢- dependence is separated ie we write
P(x,t) = ¢(x) x T(1).
(i) Show that

1 . dT(t)_ 1 _ﬁdqu(x) )
T(t)l dt _¢(x)( om  dx? )+V() (11)

and explain why each side of this equation must equal the same constant “A”.

(ii) Solve the T-equation for T'(¢) given that 7'(0) = 1. Show that if A is real,
| ¥(x,t) |* is independent of {. What is the frequency w of the wave in terms of
A? Assuming the Finstein relation £ = hw, find F in terms of A, and obtain
an expression for the average value of z. Such solutions are called stationary
state solutions: why? Do all wavefunctions have to satisfy the TISE?

(iii) Suppose V' depends on ¢ as well as on z: V(x,t). Will such a separation
of the z and ¢ variables be possible, in general? Can you invent a V(z,t) for
which it would be mathematically possible (even if not physically sensible)?

(iv) Returning to the case V(z), suppose A is in fact complex, A = £ —iI'/2.
Show that the total (integrated over ) probability decays exponentially with
a half-life of (RIn2)/I". Suggest a physical problem in which such a solution
might be useful.



Particle in a Box

. Necessary integrals

You will need certain integrals repeatedly over the next few weeks. They are
given here; make sure that you can do them and then keep this piece of paper

handy.
o /nmr\ . mmrzy %, if n =m;
/0 s < a ) s < a ) N {0, otherwise. (12)
a 2an . . .
/ Gin (mm:) cos (mﬂx) _ | %y ifn + m is odd; (13)
0 a a 0, otherwise.

. Particle in a box: average values

Consider the particle in the infinitely deep square well potential (V' = 0 for
0<z<a,V=ooforz<0,z>a).

(i) Show that the allowed energy values are E, = h*n?r?/2ma® forn = 1,2,...
and that the associated normalised eigenfunctions are

) = @ sin (%) (14)

Why is there no state with £ = 07 What does it mean to say that the ¢, are
orthogonal?

(ii) Show qualitatively by means of a sketch that the eigenfunctions ¢(z) and
¢o(z) are orthogonal.

(iii) For a particle with energy Fj, calculate the quantum-mechanical expec-
tation value of z, denoted by (z).

(iv) Without working out any integrals, show that ((z — (z))?) = (2?) — a?/4.
Hence find ((z — (x))?) using the result

3 3
“ . ., /nmx _ @ a
/0 x°sin <—a )d:z:— 6 I (15)

(v) A classical analogue of this problem is that of a particle bouncing back
and forth between two perfectly elastic walls, with uniform velocity between
bounces. Calculate the classical averages values (z). and ((z — (z).)?)., and
show that for high values of n the quantum and classical results tend to each
other.
. TSuperposition of eigenfunctions
Suppose the state is described at time ¢ = 0 by the wavefunction

1

V2

i) Show that % is correctly normalized.

(et =0) (¢1(2) + da(2)) (16)

7



ii) Show that this is not an energy eigenfunction. What are the possible results
of a measurement of the energy of the particle, what are the corresponding am-
plitudes, and what are the corresponding probabilities? What do you expect
the expectation value of the energy to be?

iii) Repeat (ii) but with the wavefunction
1

¢/($7t = 0) = \/5

(61(2) + €76a(x)) (17)

iv) Reverting to v, explain why at subsequent times the wavefunction is given
by
1

V2

Does the outcome of a measurement of the energy of the particle depend on
when the measurement is made?

v) Show that

1 7 27 ] 2
|¢($,t)|2 == {sin2 (ﬂm) + sin? < ﬂm) + 25sin (E) sin (ﬂ) coswt}
a a a a a (19

where w = (Ey — Fy)/h = 3E;/h. Make rough sketches of [¢|? for ¢ = 0,
t =h/12E, t = h/6F;, t = h/4F;. Does the outcome of a measurement of
the position of the particle depend on when the measurement is made?

vi) Given that
a 2 2
/ T sin (E) sin (ﬂ) dx = —8i, (20)
0 a a 972

show that a particle with this wavefunction has (z) = a/2 - (16a/97%)cos wt.

(o) = — (d(2)e P 4 gy (w)em 0T) (18)

Discuss the connection between this result and the sketches of |¢]2.

vii) What is the value of w for an electron confined to a distance comparable
to the size of an atom (say 107'° m)? What is the wavelength of radiation
having this (circular) frequency?

Operators, Expectation Values, Conservation
Laws

. Hermitian Operators

Why are dynamical quantities (energy, momentum ...) represented by Hermi-
tian operators in quantum mechanics?

The Hermitian conjugate A’ of a differential operator A is defined via its
matrix elements between arbitrary wavefunctions ¢; and ¢,,

[ simatoeyts <[ (An(w) ea(ayis o)



provided ¢y and ¢, vanish at © = £ oo. Show that

(you will need to do an integration by parts - see Rae p67,68) and

o>\ &
— | = (23)
Ox? Ox?
Deduce from (22) that the momentum operator —ih(d/dz) is Hermitian and
from (23) that the kinetic energy operator is Hermitian.

. Eigenfunctions

1) Is eipz/h +e wa/h an eigenfunction of momentum? Is it an eigenfunction of
g g
kinetic energy?

(ii) Is e~l=//2 an eigenfunction of momentum? (Careful: a sketch and some
thought is the best approach).

. TProbability current density and the 1-D barrier

Derive the continuity equation relating the rate of change of probability density
¥* to the gradient of a probability current density 7, and find the expression
for j. Find j for the plane wave solution ¥ (z,t) = A e**~™! and express your
answer in terms of the particle velocity p/m. [Note: A is in general complex].

Particles of mass m and energy E are incident from the region = < 0 on the
“finite step” potential V(z) =0 for z <0, V(z) = V; for z > 0, with V5 > E.
(i) Explain why the solution of the time independent Schrodinger equation
in the region z < 0 may be taken to have the form ¢;(z) = € 4 rei*®
where k& = (QmE/hQ)%, and why the solution in the region z > 0 has the form
¢2(2) = ae™K% where K = [2m(Vp — E)/hQ]%
(ii) By imposing suitable boundary conditions at = 0 show that
k=K 2k
"TErin YT RHiR

(24)

(iii) Is your solution for the wavefunction an energy eigenstate? Is it a mo-
mentum eigenstate?

(iv) Compute the probability current density in the two regions. Discuss your
result.

(v) Show that r can be written as e™%* where o = tan~!(K/k), and hence
show that

|1(2)])* = 4cos®(kx + a). (25)
Make two separate sketches, for the special cases £ = V5/2 and F = Vj, of
|$1]2, and of |¢,|?, showing how they match at = = 0.

(vi) Estimate the penetration distance into the region z > 0 for an electron

with Vo — F = 1eV.



4. tEquations of motion for expectation values
Prove that J .
i
S WlA) = = (o[lH, All¢) (26)

where A is any operator (not explicitly depending on t) representing an ob-
servable dynamical quantity. You can do this either by writing out (¢|A|)
as an integral, and differentiating with respect to time or directly in the Dirac
notation by using

e,
ih ) = HIY)

e,
i (9] = (1 1)

What is the corresponding result if the operator A does depend explicitly on
17

5. fCommutators and Consequences

i) Verify that if the momentum operator p is represented by —ih(d/0x) (in
one dimension) acting on wavefunctions, then

[p, z]é(x) = —ihg(x) (28)
for any differentiable wavefunction ¢(z), where [A, B] means AB — BA.
ii) Find [p, V(2)].
iii) For any operators A, B, verify that
(A, B = [A, BB + B[A, B] (29)

For H = 27% + V() use (29) together with your results for i) and ii) to show
that

[H,z] = —ih L
i

iiiA) Alternatively, if you’re not happy with iii) use the differential operator
representation H = — 2> & +V/(x) to calculate the commutators (30) directly.

T 2m dz?

iv) Use the commutators (30) and the equation of motion (26) to show that

d p
E<l'> = <E;V
E@) = _<%>' (31)

v) Let V(z) = 3mw?z? (ie the S.H.O. potential). Plug this into (31), solve the
resulting differential equations and show that (z) has the same time dependent

behaviour as x does classically.
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. TTRelation to Classical Eqns of Motion

What is the relationship between the results (31) and the classical equations
of motion? In the classical mechanics of one particle in a potential what in-
formation do we need to specify at time ¢ = 0 to have a well-defined problem
(recall, in classical physics the equations of motion are second order in time
dervatives)? Are the equations of motion of classical mechanics deterministic?
In the quantum physics of one particle in a potential how much initial informa-
tion do you have to give to have a well-defined problem? Do we have to specify
less or more initial information in the quantum case? Is the time-dependent
Schrodinger equation a deterministic equation? Why 1is this consistent with
the probabalistic nature of QM?

. T1Two Particles

The Hamiltonian for two particles of mass m moving in one dimension inter-
acting via their mutual potential energy V(z, — x3) is given by

R* 9% R O?

2m 2} 2m oz}

H = + V() — z2) (32)

where x; and x5 are the coordinates of the two particles. Show that the total
momentum of the two particles is conserved. [Hint: the total momentum
operator P is P = p; + p; where p; = —ih% and similarly for p,.]

. TTEigenvalues and Eigenfunctions of Hermitian Operators

In Dirac’s notation if @ is a Hermitian operator then |v) = Q|u) implies
(v] = (u|@. Eigenstates of () are labelled by their eigenvalues ¢, ... and
satisly Qlgn) = ¢nlqn)-

Show that (u|Q|v) = ((v|Q|u))* and hence that the eigenvalues of @ must be
real.

Show that when ¢, # ¢ then (g,|¢.) = 0.

Suppose that |a) and |b) are eigenstates of () with the same eigenvalue; then
the previous proof of orthogonality fails. However it is always possible to
construct linear combinations of |a) and |b), let’s call them |a) and |b), which
are orthogonal. Do it.

Measurement

. Change of state following a measurement

A particle in the infinite-sided box has the wavefunction (16). At a certain
instant, its energy is measured and found to have the value h*/2ma?*. What
is the probability of finding the particle in the region 0 < z < a/2 (i) before
the energy measurement? (ii) after it? Explain the answers qualitatively, with
the aid of a sketch.

11



2. Compatibility

Explain why it is possible to have quantum states for a particle in which the
momentum and the kinetic energy both have well-defined values, but that this
is possible for the momentum and the total energy only if the potential energy
is a constant.

Find a wavefunction (not normalised) such that p, = —ih%,py = —z'haa—y and

P, = —ihaa—z all have well-defined values, say hk,,hk,, and hk, (i.e. you are
looking for a wavefunction for a particle with definite momentum (vector) k).
Why can all three components of momentum have well-defined values?

Two operators A and B do not commute. Is it true that

[A, B|) # 0 (33)
for any state 9?7

3. Uncertainty relations

As a simple example of a time-independent wavepacket, consider the function

1 ko+Ak

= — ke ks 4
2Ak Jiky—Ak ‘ (34)

¢(z)
which may be regarded as a superposition of (complex) waves ¢ with dif-
ferent k’s, lying within Ak on either side of a central value k. Evaluate this
integral and show that
-2
,  sin*(Ak.x)

Sketch |@(x)|* versus x (recall that Ak is the spread in the wavenumbers of
the packet). |¢(x)|? is mostly concentrated in the region bounded by its first
zeros on either side of the origin; if the size of this region is denoted by “Axz”,
show that “Az” Ak = 27. Relate this to the uncertainty relation AzAp > %h.

(35)

[The reason we used quotes in “Az” is that it is not quite the same as the
mathematically precise definition Az = [((z — <x>)2>]%]

12



4. 1Two-Slit Interference

Let the amplitude for a particle from source S to reach slit 1 be (1|5), to get
from slit 1 to point z on the screen (z|1) etc. Assume each slit is infinitely

narrow but that if a particle hits the slit it goes through with amplitude 1.

i) Write down expressions for the amplitude for a particle to leave S and reach
the point x via slit 1, via slit 2, and via both slits. Explain why the result of
measuring the number of particles arriving at the screen qualitatively differs for
two open slits compared to one open slit. What happens to the distribution of
particles on the screen if both slits are open but there is a measuring device on
the slits detecting which slit the particle goes through? Does the distribution
on the screen depend on whether we read the output of the measuring device
or not? Why? When no such measuring device is present is it correct to say
that particles go through either slit 1 or slit 27 (You are strongly advised to
read Chapter 1 of Feynman’s Lectures on Physics, Vol III.)

ii) Now assume that the source S is infinitely far away from the slits (so that
the probability amplitudes for the particles at slits 1 and 2 are equal and in
phase). Given that the amplitude for a particle of momentum p starting at y
to end at x is

1
x -yl
compute exactly the probability distribution P(xz) for particles arriving at the
screen when both slits are open.

<X|y> _ P (x=y)/h (36)

iii) Now simplify P(z) in the regime L > d and L > x.

13
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5. TThe eigenstates of two commuting operators A and B are denoted |a,b) and
satisfy the eigenvalue equations Ala,b) = ala,b) and Bla,b) = bla,b). A
system is set up in the state

) = N([1,2) +2,2) +]1,3)) (37)

What is the value of the normalization constant N?

A measurement of the value of A yields the result 1. What is the probability
of this happening? What is the new state |¢)") of the system?

Then a measurement of the value of B yields the result 2. What is the prob-
ability of this happening? What is the new state |¢)") of the system?

Given that the system starts in the state 1)) and then A is measured and then
B is measured what is the probability that it ends up in the state [¢")?

Repeat the above but measure B first and then A. Comment on your results.

6. T1The operators A and B do not commute. The eigenstates of A are |0) and
|1) and satisfy A|a) = a|a). The eigenstates of B are

1

[+) = —=(10) 1)) (38)

E

2

with eigenvalues £1 respectively.

A system starts in the state |0). A measurement of B yields the value +1.
What is the probability of this and what is now the state of the system?

Now a measurement of A is made. What are the possible outcomes and what
state will the system be in afterwards?

Suppose the measurements of A and B are made in the opposite order. Discuss
what happens.

Suppose alternating measurements of A and B are made ad infinitum. Discuss
what happens.

7. 1TMeaning of the Uncertainty Relations

One of the most important ideas in quantum mechanics is Heisenberg’s un-
certainty relation (HUR) between the position and momentum of a particle
AzAp > h/2. Some of the most popular of the many interpretations of this
inequality are

(a) Position and momentum cannot be measured simultaneously to an arbi-
trary degree of accuracy.

(b) The exact position and momentum cannot be known simultaneously, with
the HUR indicating the degree to which prior knowledge of one observable
is lost in the act of measuring the conjugate quantity.

(c) The essentially classical concepts of position and momentum cannot be
simultaneously defined in quantum mechanics.
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(d) A particle cannot simultaneously possess an exact value for momentum
and position.

(e) The results of a collection of position and momentum measurements have
statistical dispersions which satisfy the HUR.

Think about the meaning and interconnection of these various statements and
discuss with your peers and tutor!

. TThe energy-time uncertainty relation

In many books on Quantum Mechanics ones sees quoted without much dis-
cussion an uncertainty relation (UR) between energy and time of the form

AEAL > h/2. (39)

But there is a sublety with this in QM. In class we derived the general un-
certainty relation which follows from the non-commutativity [A, E] # 0 of the
two hermitian operators A and B which represent the physical observables A
and B. In QM we certainly have an energy operator — it’s just the Hamilto-
nian H — but we do not have an operator for time. Indeed time in QM is just
a parameter and not an observable. Thus the status of the energy-time UR

differs from that of other UR’s.

One way to derive a well-defined form of the energy-time UR involves the
general relation AAAB > 1|([A, B])| derived in lectures. By taking B =
H, the Hamiltonian of the system, but keeping A arbitrary (apart from the
assumption that both A and H have no explicil time dependence), show that

the above equation together with Eqn.(26) of the problem set implies

AA
—————AH >h/2. 40
(A}l o
Defining the uncertainty in time as
AA
At= ———— (41)
|d(A)/di]

then leads to the AEAt > h/2 relation. (The interpretation of (41) is that the
“uncertainty in time” is expressed as the average time taken for the expectation
of some operator A to change by its standard deviation, and is physically
reasonable as it gives the shortest time scale on which we will be able to
notice changes by using A in state [¢)).)

As an application of the energy-time UR, consider the excited ‘2p’ state in
hydrogen which decays to the ground state with lifetime 1.6 x 10~%s. Approx-
imately what value do you expect for the intrinsic uncertainty in the energy
of the emitted photon (the so-called ‘natural width’ of the emission)?

[f1There is another useful way of thinking about the meaning of the energy-
time uncertainty relation involving Fourier transforms which is well covered in
Question 5 of Problem Set 5 of the 2nd year Mathematical Methods course.
Make sure you understand this problem.]
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The Simple Harmonic Oscillator

. TEigenfunctions, eigenvalues

The eigenvalue equation for the SHO is
_h2 2 1
(_8_ + —mw2$2) b= Fo (42)
x

where w is the classical frequency of the oscillator.

i) Show that by making the change of variables = y\/-"= (42) becomes

o (_% ¥ y2) b= B (43)

[¥]

Y

i) Show that ¢(y) = e~ 7 satisfies the eigenvalue equation for the SHO and
find £. In fact this is the ground state. Show that the correctly normalized
wavefunction is

do(z) = (L) ' exp(—z®/2a*) where a® = h/mw. (44)

ma?
iii) Find the expectation values of z, 2%, p and p* for a particle in the ground
state. [Hint: for (p?) use p*/2m 4 tmw?a? = E].

iv) Defining Az = [((z — (z)))]2, Ap = [{(p— (p))?)]/? show that in this case
AzAp = %h Comment on this result.

You will need the integrals

oo 2 ™ oo 2 1 ™
-ty :\F; / zre™ " d; :—\ﬁ. 45
/—ooe x (8% —oo(ZZ c v 2cv (8% ( )

. Pictures

On the same diagram, plot carefully (paying particular attention to the points
of intersection of the various curves)

1) ¢o(x) from 44 versus z, indicating where d;j;) =0

ii) the potential energy %muﬂ:c2 versus

iii) the total energy £ = %hw versus

iv) the region in x to which the particle would be confined according to classical
mechanics.

Why do the z-values such that d;;;o = 0 lie at the limits of the classically
allowed region?
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3. {Spectrum

The form (43) strongly suggests that we should try factorizing the differential
operator. So define

i) Show that

1 far .,
D'Df = 5(—@+yf—f)
1 d?
DD f = 5(—d—yf—|-y2f‘|'f) (47)

and hence that (43) may be written
1
heo (DTD + 5) é = Ed (48)

and that
D'D-DD' = -1 (49)

ii) Now assume that ¢ satisfies (48). Show that ¢’ = D ¢ also satisfies (48)
but with F replaced by £’ = E — hw. (Most easily done by acting on (48)
with D and then using the commutator to reverse the order of D and DT.)

iii) Explain why there must be a ¢q satisfying D ¢o = 0. Writing this condition
out explicitly gives a first order differential equation for ¢q; solve it. To what
value of F does ¢q correspond?

iv) Now show that if ¢ satisfies (48) then ¢/ = D¢ also satisfies (48) but with
E replaced by E' = E + hw.

v) Now assemble everything to give the spectrum £, and a recipe for gener-
ating the eigenfunctions ¢,. Write out the first three eigenfunctions explicitly
and plot them on a graph.

vi) Is the ground state wavefunction an even or odd function of 2?7 How do
the excited states behave under @ — —z?7 (This property is called the parity
of the state.)

4. 77A slicker way

Of course what we did in the previous question didn’t really depend on a
differential equation; just on the properties of some operators. So actually it
can be done at a more abstract level without reference to differential operators
at all. So let




A = x4+ 1

Al = T — i (50)
i) Show that [A, AT = h and H = wATA + hw/2.
ii) Show that [H, A] = —hiwA and [H, AT] = hw AT

iii) Assume that H|¢) = Fl¢); show that |[¢') = A|) satisfies H[y') =
(E — hw)|y"). Deduce that there must be a state |0) satisfying A|0) = 0 and

give its energy.

iv) Show that |[¢') = Af|y) satisfies H|y)') = (E + hw)|¢'). Now you can

deduce the spectrum F,, and how the corresponding states |n) are related to

0)-

v) It’s easy to compute the correct normalization too. Being careful we have

In+1) = C,Al|n) (51)

where the states are all normalised and C), is a constant. Show that
l=(n+1n+1)=|C.%h(n+1). (52)

This tells you C';; find the constant N, such that

[n) = Na(AT)"10) (53)

is correctly normalized.

Barriers and Wavepackets

. TMomentum probability distribution I

Consider the following two normalised wavefunctions
1 1
é1(x) = —=exp(—|z|/a), ¢o(x) = €™ —=exp(—]|z|/a). (54)
Va Va
Calculate () and (p) for both of these wavefunctions.
Sketch |¢1|* and |¢q]? versus z for fixed a.

The momentum probability amplitude corresponding to a position probability
amplitude ¢(z) is (see Question 7.2)

A(; e~irelhg (z)dx 55
¢(p) = \/ﬁ ) (55)
Evaluate ¢, (p) and bs (p) and sketch both as a function of p, for fixed a. Give
an informal (qualitative) definition of the “spreads” of |¢;(z)|?

|¢1( )|* in p. Show that their product is of order A.

in z and of
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2. 1t Momentum probability distribution II

A particle is in the state |¢)). Describe in words what information the ampli-
tude (z|t) contains; what do we usually call this amplitude?

Let |p) be an eigenstate of the momentum operator p (contrary to our usual
practice we need a hat on the operator here to avoid getting confused) so that
plp) = p|p). Describe in words what information the amplitude (z|p) contains.
Explain why (z|p) o exp(ipz/h).

Describe in words what information the amplitude (p|z) contains and give its
form as a function of p and =.

Describe in words what information the amplitude (p|t)) contains and explain
why

(pl) o [ da (ple)(aly), (56)

which, up to a constant factor, is (55). Confirm that the factor 1/v/27h ensures

that o
JEORIE (57)

if ¢(x) is normalised. (You’ll need to use the Dirac delta function covered in
the Mathematical Physics lectures.)

3. iThe 1-D finite well

A particle of mass m is in a “finite well” potential

V() = W for |z|>a
= 0 for |z|]<a (58)

where Vj is positive. It may be shown that for such a potential, which satisfies
the condition V(—z) = V/(z), each energy eigenfunction has a definite parity,
which can be either even (¢¥(—z) = ¢ (2)) or odd (¢Y(—z) = —(z)). (We'll

meet parity again next term.)

(i) Assuming that the well parameters Vi and a are such that these bound
states are possible, sketch the form of the wavefunctions for the first two
bound states (E < V;) of even parity, and for the first two bound states of odd
parity (not exact wavefunctions; just the right number of wiggles, the right
parity, and the right behaviour at the edge of the well and as z — +00).

(ii) The bound state wavefunction for even parity states has the form

p(z) = Acoskr for 0<z<a (59)
= Be ™ for z>a, (60)

where k& = (2;?2]3)5 and K = \/27;1(;;+E). Write down ¢(z) for —a < 2 <0

and for + < —a. By applying the boundary condition at z = a, show that the
allowed k (i.e. F) values are determined by the roots of the equation

o=

(v —s%)2 = stans (61)
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where v = [2mVya2/h?%)z and s = ka. Check that v and s are dimensionless.
Why is it not necessary to consider the boundary condition at z = —a as well?
This equation (61) can be solved for s, given v, by a graphical method. For
positive s, sketch the function stans versus s, and the function (v? — 32)%
versus s. Where these curves meet, you have a solution for s. Show (a) that
there is always one solution, whatever the value of v; (b) that a second “even”
bound state is possible as soon as v becomes greater than =.

(iii) Write down a similar form of the wavefunction for odd-parity states, and
show that the energy eigenvalue condition is

o=

(v2 — 32) = —scot s (62)

Sketch both sides of (62) as a function of s, and show that there is no odd-
parity bound state if v < 7/2.

(iv) Explain why the number of bound states (even + odd) is given by the next
integer greater than the value of 2v /7 (which is called the “well parameter”).

(v) The roots of (61) and (62) can be found by (for example) using the Find
Root command on Mathematica - or by trial and error. Take m = electron
mass, a = 0.5 nm and V5 = 20 eV. How many bound states are there?

Verify that the two lowest roots for s are s = 1.44438 and s = 2.88685 and
find the corresponding eigenvalues in eV.
. 1Barrier penetration and transmission

A particle of mass m is incident with energy E < Vg from the region z < 0 on
the finite potential barrier

V(iz) = 0 for z<0,z>a
= V for 0<z<a. (63)

Take the wavefunction in < 0 to be

¢1 — eikz + Re—ikz7 (64)
in0<z<atobe , ,
hy = AT+ Be ™7 (65)
and in x > a to be '
w?) — Cezkz (66)

where K? = 23(V, — E),k* = 2mE |h*.

i) Is the wavefunction an energy eigenstate?

ii) Is the wavefunction a momentum eigenstate?

iii) From the boundary conditions at + = 0 deduce that
1K K

2=A(l-—)+B(+—7)

- (67)
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and from the boundary conditions at * = a deduce that

1 1k

_ - _—Ka N tka
A= ek 4 H)etk0 (68)
and | "
B = - Ka 1 — l_ ika ]
5¢ ( K)e C (69)

Substitute these expressions for A and B into the previous equation to show
that

0= 2 (70)
[2cosh Ka — i (% - %) sinh Ka|

Hence show that the transmission coeflicient (deﬁned as the transmitted flux
divided by the incident flux) is

K2 1 E2)2 -1
IC|? = (1 + %sin}ﬂ Ka) , (71)

which can also be written as

[ b1 — B/VeE)
or= (” 4<E/vo><1—E/vo>) )

where v is as defined in Q 1, v = (QmVOaQ/EZ)%.

iv) Compute the probability flux inside the barrier, ie from . [Hint: caution
- A and B are complex!] Compare your result with part iii).

v) Show that if F/Vy < 1 and v > 1,|C|* is given approximately by

165 _,,
€ .
Vo

C* ~ (73)

This shows the characteristic exponential tunnelling probability: the amplitude
for waves with E' < Vg is exponentially attenuated by the barrier (though of
course classical particles wouldn’t get through at all); it is analogous to the
evanescent waves in optics (e.g. in total internal reflection).

Suppose E = 1eV, Vi = 6eV and a = Inm. By what factor will |C'|? change if
a increases to 1.1 nm?

The “Scanning Tunnelling Microscope” is just one application of quantum
tunnelling - see G. Binnig and H. Rohrer Reviews of Modern Physics 59 (1987)
615 (their Nobel lecture).

. TTTransmission resonances

In Question 4 above, imagine the energy gradually increasing until it becomes
equal to V5. What is |C|* when F = V4?7 Now suppose E becomes greater
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than V5. Then K? becomes negative, K — i|K| (or maybe —i|K|?) and
sinh? Ka — (isin |Ka)?, so

CF 5 (1+sin2[v2(E/VO—1)]§) )

AE/Vo)(E/Vo =1

if vou don’t like this, you can of course repeat the whole calculation from
y , Y p
scratch ... ).

1
Show that this new |C|? is equal to unity when {QE—@(E - VO)} * = nm/a. What
does the wave in the region 0 < z < a look like at these values of E7

. T1Time dependent packets; dispersion

A simple example of a time-dependent wave packet is provided by a super-
position of waves for which the frequency is proportional to the wavenumber:
w = ck. Light, of course, is such a wave. Consider the packet

1 kot Ak

tk(z—ct)
2AE Jro—Ak ‘ dk (75)

Pz, t) =
(Note that ¢(z,0) is the packet in Question 5.3).
(i) Evaluate the integral and show that

sin?[Ak(z — ct)]
[Ak(x — ct)]?

|p(z, 1) = (76)
(as in Q5.3). For fixed ¢, at what x is |¢(x,?)]* a maximum, and at what
values of z do the first zeros of |¢(z,t)|* away from the maximum occur?
Sketch |@(x,t)|? for fixed ¢ versus z. Describe how the packet moves along in
z as t varies. Does the shape of the function |¢(z,¢)|* change?

Consider now the packet for fixed z, as ¢ varies. Where is the maximum as
a function of ¢ for fixed x, and where do the first minima on either side of it
occur? If the spread in the packet in time, “At”, is defined as the distance
between the first minima on either side of the central maximum, show that

Aw “At” = 2m, where Aw = cAk. Relate this to AE At > %h

(ii) A time-dependent free-particle (plane wave) solution of the 1-D Schrodinger
equation is ¢ (z,t) = N exp(tkx —iEt/h) where N is a normalization constant
and £ = p*/2m = h’k?/2m = hw. It follows that for these waves the fre-
quency w is not proportional to k& but to k% w = hk?/2m. This makes a
dramatic difference to the way a packet of these waves evolves with time: the
packet does not maintain its shape, but “flattens out”, a phenomenon called
dispersion (of the packet). Consider the packet

1 ko+Ak

¢(m,t) — m Ak eika;—ihk2t/2mdk (77)
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(note that ¢(z,0) is again the packet from Q5.3). This time the integral can
not be done in terms of elementary functions. However, if kg > Ak and the
t-term in the exponent is “not too big” we can expand “k*” about the point
k = ko by a Taylor series: k* = k3 + (k — ko).2ko, and we are back to only
a linear term in the exponent, which can be integrated exactly. Show that in

this approximation
sin?[Ak(z — vt)]
N =
W}(‘Tv )| [Ak(:p—vt)]Q

where v = hkg/m, and describe how this packet moves as ¢ varies.

(78)
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