# COHERENCE, INTERFERENCE AND MANY BODY DYNAMICS IN QUANTUM HALL EDGE STATES

# John Chalker

# **Physics Department, Oxford University**

**Collaborators:** 

D. Kovrizhin: Phys. Rev. B (2009), (2010) and arXiv.

Y. Gefen and M. Veillette: Phys. Rev. B (2007).

# Outline

**Electron interference** 

In vacuum . . . . . and in solids

**Quantum Hall edge states** 

— as electron waveguides

**Edge state interferometers** 

- surprises far from equilibrium

Edge states out of equilibrium

- understanding quantum relaxation

— consequences for interferometers

## **Electron Diffraction in Vacuum**

### **Davisson and Germer, 1927**





NATURE

[APRIL 16, 1927

### **The Aharonov Bohm Effect**

Chambers, 1960 Phase  $\Phi/\Phi_0$  from encircling flux  $\Phi$ Flux quantum:  $\Phi_0 = h/e$ 



SHIFT OF AN ELECTRON INTERFERENCE PATTERN BY ENCLOSED MAGNETIC FLUX

R. G. Chambers H. H. Wills Physics Laboratory, University of Bristol, Bristol, England (Received May 27, 1960)

### **Electron Interference in Conductors**

**Obstacle:** Scattering

by other electrons

### by impurities

**Solution:** Work in the mesoscopic regime

small samples

low temperatures

## **Aharonov Bohm Effect in Gold Rings**

#### **Measure resistance to probe interference**



**Diameter 800nm** 

Webb et al Phys. Rev. Lett. (1985)

Many channels and impurities reduce fringe visibility

### **Quantum Hall Edge States**

### **Two-dimensional electron gas in magnetic field**

**Classical skipping orbits** 

**Quantum edge states** 



### **Edge states as Ideal Waveguides**



### **Chiral motion**

Only possible scattering is in forward direction

### **Theoretical Description of Edge States**

### **Project from 2D to 1D**

**Classical Hamiltonian:** 

$$\mathcal{H} = v p_x \qquad \dot{x} = \partial_p \mathcal{H} = v$$

drift at constant speed

**Single-particle quantum Hamiltonian:** 

$$\mathcal{H} = \int \psi^{\dagger}(x) (-i\hbar v \partial_x) \psi(x) dx$$

# Edge state dynamics with interactions

**Free propagation** 

Charge flow in and out of bulk



### Interactions make collective modes dispersive

### **Two alternative descriptions**

### - related via bosonization

### As electrons:

$$H = -i\hbar v \int dx \psi^{\dagger}(x) \partial_x \psi(x) + \int dx \int dx' \ U(x - x') \rho(x) \rho(x')$$
$$\rho(x) = \psi^{\dagger}(x) \psi(x)$$

### As collective modes:

$$H = \sum_{q} \hbar \omega(q) b_{q}^{\dagger} b_{q}$$
$$\omega(q) = [v + u(q)] q \qquad u(q) = (2\pi\hbar)^{-1} \int dx \ e^{iqx} U(x)$$

# **Consequences of interactions**





# **Manipulating Edge States**

### **Quantum point contacts as beam splitters**



**Edge State Interferometer Design** 

**Fabry-Perot** 

**Mach-Zehnder** 





**Edge State Interferometer Design** 

**Fabry-Perot** 

**Mach-Zehnder** 







# **Edge State Interferometer Design**

**Fabry-Perot** 

**Mach-Zehnder** 









### **Experimental system**



Heiblum Group, Weizmann Institute

# **Elementary theory**

#### **Scattering amplitudes**

#### Paths through interferometer





Combined amplitude  $A = \cos(\Phi/2)$ Current  $I \propto |A|^2 = \frac{1}{2}[1 + \cos(\Phi)]$ 

### **Fringes in Edge State Interferometer**



 $G_{SD}$  vs  $Flux \ density$  and Area

### Interferometer out of equilibrium

### **Decoherence from inelastic scattering**



# **Surprises from experiment**

### **Oscillatory dependence of visibility on bias**

**Differential conductance**  $G(\Phi_{AB}) = G_0 + G_1 \cos(\Phi_{AB})$ 

Fringe visibility  $\mathcal{V} = |G_1|/G_0$ 



Neder et al., PRL (2006)

Also Regensburg, Basel and Saclay groups

### Focussing on non-equilibrium aspects



### **Experiment – Actual**

le Sueur, Altimiras, Gennser, Cavanna, Mailly & Pierre, PRL (2010)

**Sample Design** 

#### **Evolution of Distribution**





### **Theoretical Idealisation**

# Evade treatment of point contact - treat quantum quench Study time evolution in translationally-invariant edge

For approx theory with QPC see: Lunde *et al*, (2010) & Degiovanni *et al* (2010)



# **Physical picture of equilibration**

Collective mode Hamiltonian  $\mathcal{H} = \sum_{nq} \hbar \omega_n(q) b_{nq}^{\dagger} b_{nq}$ 

Edge magnetoplasmon dispersion  $\rightarrow$  electron equilibration?

Initial quasi-particle separation  $s = \hbar v / eV$ 



Equilibration when wavepacket spread  $l(t) \gtrsim s$ 

### **Equilibration from two mode velocities**

Two edge modes with short-range interactions

Two linearly dispersing modes  $\omega_1(q) = v_+ q$  &  $\omega_2(q) = v_- q$ Initial quasi-particle separation  $s = \hbar v/eV$ 

Equilibration when wavepacket spread  $l(t) \gtrsim s$ 

Spread 
$$l(t) = [v_+ - v_-]t$$
  
Equilibration time:  $t_{eq} \sim \frac{\hbar}{eV} \cdot \frac{v_+ + v_-}{v_+ - v_-}$ 

Cf. Pascal Degiovanni, Charles Grenier *et al* (2010)

### Nature of long-time state?

Simplest expectation: thermal with T fixed by energy density

**Not so** — energies in each collective mode conserved

No equipartition: 
$$T_{\text{final }1} = \left[ f T_{\text{initial }1}^2 + (1-f) T_{\text{initial }2}^2 \right]^{1/2}$$

with f dependent on interactions

Momentum distribution: difference between long-time and thermal states



### Back to non-equilibrium interferometer



# **Surprises from experiment**

**Oscillatory dependence of visibility on bias** 



### **Clues from two-particle problem**



# **Clues from two-particle problem**



### **Results from full theory**

#### **Visibility**

#### Phase



Related calcs: Neder and Ginossar; alternative theory: Levkivskyi and Sukhorukov

# Summary

### **Coherent many-body quantum dynamics**

observed in QH edge states

**Coherence far from equilibrium** 

probed in interferometer

Interactions bring edge into steady state

but this state is not thermal