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Outline

Spin liquids

— characteristics and candidates

— dynamics: ordered vs. fractionalised magnets

Kitaev’s honeycomb lattice model

— from spins to fluxes and free fermions

Dynamics in the Kitaev model

— signatures of emergent excitations in S(Q,ω)

— relation to quantum quench and x-ray edge problems



Spin liquids

• Many types

e.g. gapped vs gapless

• Unusual quasiparticles
e.g. gauge fields

& fractionalised excitations

• Absence of spin order

poor diagnostic
RVB state — Anderson (1973)



Dynamics: ordered vs. fractionalised magnets

Compare dynamic structure factors

Magnon dispersion in N éel state

undoped cuprate, Coldea et al. (2001)

Spinon continuum in Heisenberg chain

KCuF3, Caux et al. & Lake et al. (2013)



2D spin liquid candidates

κ-(ET)2Cu2(CN)3

Heat capacity ∼ aT + bT 3

Kanoda et al. (2008)

Herbertsmithite

ZnCu3(OH)6Cl2

S(Q, ω) broad

Young Lee et al. (2012)



Kitaev’s honeycomb model

Spin S = 1/2 quantum magnet

with strong ‘spin-orbit’ anisotropy
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A. Kitaev, Ann. Phys. 321, 2 (2006)

Suggested realisation: G. Jackeli and G. Khaliullin, PRL 10 2, 017205 (2009)



Emergent degrees of freedom

Static fluxes
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Emergent degrees of freedom

Static fluxes . . . and . . . free fermions
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Tight binding model

hopping magnitudes Jx, Jy & Jz

signs set by Z2 fluxes

Spin correlations ultra-short-range: 〈σα
j σ

α
k 〉 = 0 for |rj − rk| > 1

Baskaran et al. (2007)



Ground state phase diagram

• Gapped liquid phases for Jz ≫ Jx, Jy and permutations

Weakly coupled dimers – both sectors gapped

• Gapless liquid phase around Jx = Jy = Jz ≡ J

Dirac cones in fermion spectrum – flux sector gapped

gapped

J =1x

yJ = J =0z

J =1

J =1

z xJ = J =0y

y

xJ = J =0z

gapless



From spins to fermions

— sketch of Kitaev’s solution

Represent each spin using 4 Majorana fermions (bc = −cb, c† = c)

~σ → {c, bx, by, bz} with σα
k = i bαk ck so σα

j σ
α
k = bαj b

α
kcjck

• Resulting H is quadratic in ck ’s

• [H, ûjk] = 0 with ûjk = ib
αjk

j b
αjk

k

H = i
4

∑

jk Âjkcjck

Âjk =

{

2Jαjk
ûjk j, k neighbours

0 otherwise

– honeycomb tight binding model
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Computing the dynamic response

Sαβ(r, t) = 〈0|eiHtσα
r
e−iHtσβ

0 |0〉

σβ
0 ≡ ic0b

β
0 adds two fluxes and fermion to |0〉

π

π ‘just’ free fermion time evolution

in presence of added fluxes

Baskaran et al. (2007)



Gross features of S(Q,ω)

• Fractionalisation

⇒ broad response

— correlations short range

• Energy cost for flux addition

⇒ gapped response

• S(Q,ω) is imperfect image

of fermion density of states

— influence of fluxes on dynamics

but ∼ 98% of wt single pcle

Gapless phase: Jx=Jy=Jz



Adding spatial anisotropy

gapped

J =1x

yJ = J =0z

J =1

J =1

z xJ = J =0y

y

xJ = J =0z

gapless

• Lower symmetry

distinct responses

Sxx(Q,ω) and Szz(Q,ω)

• Smaller flux gap

Gapless phase: Jz/2 < Jx, Jy < Jz



Gapped phase

gapped

J =1x

yJ = J =0z

J =1

J =1

z xJ = J =0y

y

xJ = J =0z

gapless

• Small flux gap but large fermion gap

flux gap ∆ ∝ (Jx/Jz)
4

• δ-function response at flux gap

appears at dynamical transition

Jx = Jy < Jz/2



Dynamical transition
onset of sharp response at flux gap

Matter fermion Hamiltonian includes

pair creation & annihilation terms

— but fermion parity well-defined

Use Lehmann representation

S(r, ω) =
∑

n〈0|σr|n〉〈n|σ0|0〉δ([En −E0]− ω)

|0〉 is ground state (flux-free)

σ0 adds two fluxes & fermion

|n〉 are eigenstates in presence of flux pair

Dynamical phase diagram

Relative parity of ground states in two flux sectors matters:

|n〉’s restricted — either to odd or to even fermion excitation numbers

Sharp response from ground-state to ground state contribution



Relation to quantum quench and x-ray edge

Dynamic response S(r, tf − ti) = 〈0|σr(tf)σ0(ti)|0〉

Equivalent quench protocol

add fluxes at ti ⇒ evolve ⇒ remove fluxes at tf

Cf x-ray edge problem

evolve Fermi sea in presence of core hole

Anderson orthogonality catastrophe?

Distinctive features of Kitaev problem:

• Dirac/gapped DoS

• Dynamical transition & parity effects



Away from integrability

Search for a realisation

Materials: spin-orbit coupling

— layered iridates?

Jackeli & Khalliulin (2009)

Cold atoms: quantum simulator

— optical lattice + spin-dept tunnelling
Duan, Demler & Lukin (2003)

Consequences of

departures from Kitaev

E.g. Heisenberg exchange

— fluxes acquire dynamics

— further neighbour correlns develop

— sharp response broadened

— response gap softened

Spin liquid has window of stability

— evolution of response smooth

inside window



Summary

Exact calculation of dynamic structure factor

— in gapped & gapless phases

— signatures of emergent fluxes and fermions

Unusual features

— response gap in gapless phase

— sharp response despite fractionalisation

X-ray edge & quantum quench

— no orthogonality catastrophe


