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Studies of ‘generic’ quantum systems

Nuclear physics Mesoscopic conductors
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Evolution operator W/(t), eigenvalues e/t
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Characterising spectra
Evolution operator W/(t), eigenvalues e/t

Spectral form factor K(t) = (3", ei((’"—em)t>

Mesoscopic conductor: Thouless time
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Characterising dynamics

Hydrodynamics & conserved densities

/\ — ~

Dynamics of quantum information

Equilibration under unitary dynamics




Speed limits without relativity
Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

[O(y; 1), O(x)]

small outside lightcone




Speed limits without relativity
Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

[O(y; 1), O(x)]

small outside lightcone

Out-of-time-order correlator (OTOC)

C(x,y:t) = [O(y, t)O(x)O(y, t) O(x)]av
clx,y;t)

E.g. with TrO(x) =0
and O(x)*=1
& likewise for O(y) t




Entanglement dynamics

Quantifying ‘equilibration’ under unitary dynamics

Density matrix p(t) = [W(t))(W(t)| for full system

— pure state preserved under time evolution



Entanglement dynamics

Quantifying ‘equilibration’ under unitary dynamics

Density matrix p(t) = [W(t))(W(t)| for full system
— pure state preserved under time evolution
Reduced density matrix pa(t) = Trgp(t)

0 — 00— — 00— — 00— —0—90

A B

Entropy of sub-system may grow with time & saturate at long times



Aim: solvable models for ergodic phase

Simple physics: Eliminate conserved densities = time-dept evolution operator

Simple solution: Random matrices & spatial structure



Aim: solvable models for ergodic phase

Simple physics: Eliminate conserved densities = time-dept evolution operator

Simple solution: Random matrices & spatial structure

Inspiration: Random unitary circuits

time

——

space

Nahum, Ruhman, Vijay and Haah, PRX (2017)
Nahum, Vijay and Haah, PRX (2018)
von Keyserlingk et al, PRX (2018)



Aim: solvable models for ergodic phase

Simple physics: Fixed evolution operator w/o conserved densities = Floquet

Simple solution: Random matrices & spatial structure



Aim: solvable models for ergodic phase

Simple physics: Fixed evolution operator w/o conserved densities = Floquet

Simple solution: Random matrices & spatial structure

Minimal model
L-site lattice of g-state ‘spins’

Floquet operator W is gt x g unitary matrix

Each ¢? x g2 unitary U, n11 independently Haar-distributed

Solve for g — >



Behaviour of Floquet model

Is behaviour consistent with ergodic phase?

Relaxation of local observables

Dynamics of quantum information?
Out-of-time-order correlator

Entanglement growth

Spectral correlations?

‘Thouless time' in many-body system



Relaxation of local observables

Local operator in g-state Hilbert space at site: O(x)

with TrO(x) = 0 and O(x)? = 1,.
Define
O(x,t) = W(t)O(x)W1(t) [Jaw=qgtTr...

Want [O(x, t)O(x)]av
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Relaxation of local observables

Local operator in g-state Hilbert space at site: O(x)

with TrO(x) = 0 and O(x)? = 1,.
Define

O(x,t) = W(t)O(x)WTH(t)  [.Jaw=q "Tr...
Want  [O(x, t)O(x)]ay

Expect limio[O(x, t)O(X)]ay ~ [O(x, t)]av[O(X)]ay = 0

Short times and finite g: [O(x,t)O(X)]ay =



Out-of-time-order correlator

Find for g —
1 [t <[x—yl/2

[0y, )O(x)O(y, ) O(x)]av = {
0 [t |x—yl/2

Butterfly velocity v =2



Entanglement growth in Floquet model

Initial state |¢)) — product state in site basis

Reduced density matrix pa(t) = TrgW/(t)[¢) (| Wi(t)

Réyni entropies e (*~1)%(t) = Tr[pa(t)?]
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Initial state |¢)) — product state in site basis

Reduced density matrix pa(t) = TrgW/(t)[¢) (| Wi(t)
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Entanglement growth in Floquet model

Initial state |¢)) — product state in site basis

Reduced density matrix pa(t) = TrgW/(t)[¢) (| Wi(t)
Réyni entropies e (*~1)%(t) = Tr[pa(t)?]

with & =2 or 3 and q large
f(t)g-2@Dt < [/4
Find (e (e7D%(t)) =
Kyg (e=DL2 > /4

Interpretation:

Entanglement at time t has range 2t

= pa(t) has g%t non-zero eigenvalues, each O(q~2t)

Entanglement spreads at speed v = 2



Entanglement growth after quench in integrable
systems

— from quasiparticle dynamics
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Entanglement growth in quantum circuits




What is lost in ¢ — oo limit?



What is lost in g — oo limit?

OTOC: Front is sharp, not diffuse

A C(x,yst)

large q limit

expected at finite q =
t




What is lost in g — oo limit?

OTOC: Front is sharp, not diffuse

A C(x,yst)

large q limit

expected at finite q =
t

Velocities: ‘Naive’ value for all speeds
(butterfly, entanglement spreading . ..)




Spectral form factor

Evolution operator W(t) with eigenvalues {e/%"}

Spectral form factor K(t) =>_,, , e/(Om=0n)t

Large ¢ = random matrix behaviour in Floquet model

K(t)=t for0<t<qt



Spectral form factor

Evolution operator W(t) with eigenvalues {e/%"}

Large g =

w,
W,

K(t)=t

Spectral form factor K(t) =

i(Om—0n)t
mme(m n)

random matrix behaviour in Floquet model

for 0 < t < gt

— consequence of coupling

0

3 = Without W, find instead
t=0 K(t) = ¢L/2




Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths
(diagonal approximation ~ diffusons)

Spectral form factor

K(t) = (3, e’ r0mt) = (Te[W/(¢)] Te[WH(¢)])

Tr[W(t)] = Zal---ar Wiya, Wasay ... Wayay

a a;

A



Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths
(diagonal approximation ~ diffusons)

Spectral form factor
K(t) = (3 o O 0m)t) = (Te[W(t) T[WT(1)])
TI'[W(t)] = Zal.--at W3132 Waza:; e Watal
Te[WH ()] = 0, o, Wi, Wiy -+~ W,

Constructive interference if path bib, ... by though Fock space
is reversed copy of path aiaz...a:



Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths
(diagonal approximation ~ diffusons)

Spectral form factor

K(t) = (3, e’ r0mt) = (Te[W/(¢)] Te[WH(2)])

Pictorially:

t possible pairings



New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

pairing A pairing B
I

time

space



New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

pairing A pairing B
I

time

space

Equivalence to t-state Potts model:
t pairings in each domain

& statistical cost for domain walls



Model of weakly-coupled chaotic grains

L-site lattice of g-state ‘spins’

Floquet operator W = W, - W; is gt x gL unitary matrix

W, COODDD D D

t=0



Model of weakly-coupled chaotic grains

L-site lattice of g-state ‘spins’

Floquet operator W = W, - W; is gt x gL unitary matrix

Each g x g unitary U, independently Haar-distributed

t=0

W=U@lhe...0U



Model of weakly-coupled chaotic grains

L-site lattice of g-state ‘spins’

Floquet operator W = W, - W, is gL x g unitary matrix

Each g x g unitary U, independently Haar-distributed
WM=UUhx...0 U,

W, diagonal in site basis |aj, az,...a;) with phase Zﬁ:l Pan,ani1

t=0

{¢@ap,an.1 } indept Gaussian random variables, zero mean

Coupling strength ([gpan,an+1]2> =c



Many-body ‘Thouless time’

Small t = L uncoupled sites = K(t)=tt

Large t = all sites coupled = K(t)=1t
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Many-body ‘Thouless time

Small t = L uncoupled sites = K(t)=tt
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Exact mapping to t-state Potts ferromagnet

Potts coupling fJ =ct = K(t) = Zpotts
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Many-body ‘Thouless time’

Small t = L uncoupled sites = K(t)=tt

Large t =

all sites coupled

= K(t)=t

Exact mapping to t-state Potts ferromagnet

Potts coupling 8J = et

K]

40

20

= K(t) - ZPotts

K(t) vs t for ¢ — oo
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Summary

Floquet models at large g give solvable ergodic phase

Systematic calculations for g — oo
Rapid local relaxation
Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour



Calculation of entanglement in Floquet model



Calculation of entanglement in Floquet model

Consider Tra[pa(t)]? with pa = Tra[W(t)[p) (x| WT(t)]



Calculation of entanglement in Floquet model

Consider Tra[pa(t)]2 with pa = Trg[W(t)|4) (| WH(t)]
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Calculation of entanglement in Floquet model

Consider Tra[pa(t)]2 with pa = Trg[W(t)|4) (| WH(t)]

i

Tr[pa(t)]?

H



Calculation of entanglement in Floquet model

Consider Tra[pa(t)]2 with pa = Trg[W(t)|4) (| WH(t)]

Alternatively draw as

i

H



Calculation of entanglement in Floquet model

Consider Tra[pa(t)]? with pa = Trag[W(t)[h) (x| W1(t)]

Represent contributions after averaging

via domains for different pairings




Calculation of entanglement in Floquet model

Consider Tra[pa(t)]? with pa = Trg[W(t)[e) (x| WT(1)]

Represent contributions after averaging
via domains for different pairings

~ RN N TI‘A[pA(t)]2 = 4tq72t

S o  { Gy Gy G G— 4" no. of directed paths of length t
O o
o o N o Y s G Y S g~ 2 statistical cost of path per step



Summary

Floquet models at large g give solvable ergodic phase

Systematic calculations for g — oo
Rapid local relaxation
Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour



Essentials of calculation: avges of unitary matrices

Floquet operator W is g x g unitary matrix

Each ¢® x ¢? unitary U, ;1 independently Haar-distributed

Need

t
<[U]31’b1 e [U]anbt X [UT]ahBl te [UT]atqﬂt> = VP7PI Héaj,aP(j)ébjn@plg)
Jj=1



Essentials of calculation: avges of unitary matrices

Floquet operator W is g x g unitary matrix

Each ¢® x ¢? unitary U, ;1 independently Haar-distributed
Need
t
<[U]31,b1 cee [U]atybt X [UT]a1ﬁ1 s [UT]OLtﬁz> = VP7P/ Héaj’aPU)aijﬁP’U)
j=1

Large g: P = P’ dominates

([U]ap almost independent Gaussian variables)

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)



Calculating K(t) in Floquet model at g — oo

K(t) = ([Tr W(t)] - [Tr WT(2)]) notation: W(t) = [W]*

« 000000e

Need  ([Unlap,2,[Unlanas - - - [Unlar,ar X [UNbw o - - - [Ublbeoby)

Avge on W
t=0

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)



Calculating K(t) in Floquet model at ¢ — o

K(t) = ([Tr W(¢)] - [Tr Wi(t)]) notation: W(t) = [W]t

————————————————————————————————————————————— t=1

« 000000e

Need <[Un]al,ag[Un]32,a3 s [Un]at,al X [Ul]bhbz s [U'];]bt,b1>

Avge on W
t=0

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large g:
b, =aysforr,r+s=1...t mod t
t contributions of this form, fors =1...t



Calculating K(t) in Floquet model at ¢ — o

K(t) = ([Tr W(¢)] - [Tr Wi(t)]) notation: W(t) = [W]t

————————————————————————————————————————————— t=1

W, O OHDDD D
Avge on W

I

<[Un]al,ag[Un]32,a3 s [Un]at,al X [Ul]bhbz s [U'];]bt,b1>

t=0

Need

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)
Leading terms for large g:

Many sites: contributions
b, =aysforr,r+s=1...t mod t

o . labelled by s, at each site n
t contributions of this form, for s=1...t



Calculating K(t) in Floquet model at ¢ — o

K(t) = ([Tr W(¢)] - [Tr Wi(t)]) notation: W(t) = [W]t

W, T DODDDD D

I

<[Un]al,ag[Un]32,33 s [Un]at,al X [Ul]bhbz s [U'];]bt,b1>

t=0

Avge on W w

Need

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large g:
& geq Many sites: contributions

b =a, s forr,r+s=1...t mod t
T rTS T labelled by s, at each site n
t contributions of this form, for s =1...¢t

. Sh=S5
Avge on W, gives factors L oo
e Sn 7 Snt1



Calculating K(t) in Floquet model at ¢ — o

K(t) = ([Tr W(¢)] - [Tr Wi(t)]) notation: W(t) = [W]t

W, T DODDDD D

I

<[Un]al,32[Un]32,a3 s [Un]at,al X [Ul]bhbz s [U'];]bt,b1>

t=0

Avge on W w

Need

Diagrammatic technique for single-pcle problem: Brouwer+Beenakker (1996)

Leading terms for large g: . L
& geq Many sites: contributions

b, = a,,s for r, s=1...tmodt .
+s for r,r m labelled by s, at each site n

t contributions of this form, fors=1...t

. Sh=S5
Avge on W, gives factors L oo t-state Potts model
e Sn 7 Snt1




