
Quantum Theory of Condensed Matter: Problem Set 2

Qu.1 In this question you are invited to demonstrate your understanding of Landau theory
for Fermi liquids by deriving the relation (which follows from Galilean invariance)

m∗

m
= 1 +

F s
1

3

between the bare mass, m, the effective mass, m∗, and the Landau parameter, F s
1 .

First, recall some definitions. Quasiparticle states are labelled by their momentum p and
spin σ. Let δnp,σ be the change in quasiparticle occupation of the state p, σ relative to its
occupation number in the ground state. The Landau expansion for the resulting change
δF in free energy is

δF =
∑

p,σ

[ǫ(p)− µ]δnp,σ +
1

2

∑

pq,σλ

fσλ
pq
δnp,σδnq,λ .

The effective mass is defined by p/m∗ = dǫ(p)/dp at p = pF , the Fermi momentum. The
Landau parameters are separated into spin-symmetric and antisymmetric parts according
to

f ↑↑ = f ↓↓ = f s + fa

and
f ↑↓ = f ↓↑ = f s − fa

(where momentum labels have been suppressed). They are also separated into spherical
harmonics according to

fpq =
∑

flPl(cos(θ))

(where spin labels have been suppressed), in which p · q = p2F cos(θ) and Pl(cos(θ)) is the
lth Legendre polynomial. Finally, they are expressed in dimensionless form by

f =
F

ν

(in which both spin and momentum labels have been suppressed), where ν is the density
of states in energy at the Fermi surface.

Now consider the energy change that results when the system is set in uniform motion with
a momentum per particle of magnitude p, for p≪ pF . On elementary grounds, for a system
of N particles this is

δF = N
p2

2m
.

Use the Landau expansion to calculate the same quantity.

(i) Show that the change in quasiparticle number (induced when the system is set in motion)
is

∫

δnpσ =
3Np

2pF
cos(θ)
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where θ is the angle between p and the direction of the uniform motion, and the integral
is over momenta in the radial direction.

(ii) Show that the resulting change in energy is

δF = N
p2

2m∗
+

1

2ν
F s
1 (
Np

pF
)2

and that ν = 3Nm∗/p2F . Hence derive the relation given between m,m∗ and F a
1 .

Qu.2 The BCS Hamiltonian is

H =
∑

kσ

ǫ(k)c†kσckσ − V
′

∑

k,q

c†k↑c
†
−k↓c−q↓cq↑

where c†kσ and ckσ denote fermion creation and annihilation operators for states labelled by
wavevector, k, and spin, σ =↑, ↓. The second summation,

∑′
k,q, is restricted to wavevectors

k, q of states lying within the Debye energy, h̄ωD, of the chemical potential, µ: |ǫ(k) −
µ|, |ǫ(q)− µ| ≤ h̄ωD. The BCS wavefunction is

|BCS〉 = Πk(uk + vkc
†
k↑c

†
−k↓)|0〉 ,

where |0〉 is the vacuum state and {uk, vk} are variational parameters, with |uk|2+ |vk|2 = 1.
The number operator is

N =
∑

k,σ

c†kσckσ.

(i) Calculate the mean particle number, 〈BCS|N |BCS〉, and its variance,

〈BCS|N2|BCS〉 − 〈BCS|N |BCS〉2

in the BCS wavefunction.

(ii) Show that the free energy of the system in the BCS state is

〈BCS|H − µN |BCS〉 = 2
∑

k

(ǫ(k)− µ)|vk|
2 −

|∆|2

V

where

∆ = V
′

∑

k

ukv
∗
k .

(iii) By minimising this free energy with respect to the variational parameters, uk and vk,
derive the zero-temperature gap equation

1 =
V

2

′
∑

k

1

[|∆|2 + (ǫ(k)− µ)2]1/2
.

(iv) Show that, in the weak-coupling limit in which |∆| ≪ h̄ωD, the gap equation has the
solution

|∆| = 2h̄ωD exp(−1/νV )
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where ν is the density of states at the chemical potential.

Qu.3 A one-dimensional model for localisation, which is exactly solvable, is defined as
follows. The system consists of a chain of sites labelled by n. Waves propagate along this
chain in both directions. The amplitudes of the left- and right going probability currents
at the site n are given by the complex numbers wn and zn respectively. Scattering of these
waves by disorder is represented in the model by a 2×2 transfer matrix, Tl, associated with
each link between successive sites, l and l + 1. This transfer matrix can be written as

Tl =
(

eiαl 0
0 e−iαl

)

·
(

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

)

·
(

eiβl 0
0 e−iβl

)

where the two phases, αl and βl, and backscattering strength, θ, are all real. The amplitudes
obey

(

wn+1

zn+1

)

= Tn

(

wn

zn

)

.

(i) Verify that scattering is unitary, showing that the net current along the chain is conserved
by proving

|wn+1|
2 − |zn+1|

2 = |wn|
2 − |zn|

2

for any wn, zn. Show also that, if wn = z∗n, then wn+1 = z∗n+1, and obtain an expression in
this case for

|zn+1|2

|zn|2
.

(ii) Consider an ensemble of systems in which the scattering parameter, θ, is fixed, but
the phases, αl and βl, are random variables, independently chosen for each link from a
distribution uniform between 0 and 2π. Denoting the ensemble average by 〈. . .〉, show that,
if wn = z∗n, then

〈log(|zn+1|
2/|zn|

2)〉 =
1

2π

∫ 2π

0

dφ log(e2θ cos2(φ) + e−2θ sin2(φ)) = 2 log(cosh(θ))

(iii) Explain why this shows that states are localised in this model, with a localisation
length

ξ =
1

log(cosh(θ))
.

Qu.4 This question is about wavefunctions in the lowest Landau level. Let x and y be
the two position coordinates in the plane, and define the complex coordinate z = x + iy.
Take the magnetic length to be the unit of length. Then, ignoring spin, single-particle
basis functions in the lowest Landau level are ψn(z) = (2n+1πn!)−1/2zn exp(−|z|2/4) with
n = 0, 1, 2 . . ..

Consider the N -particle wavefunction

Ψ0(z1, z2, . . . , zN) = N
N
∏

i<j

(zi − zj) exp(−
N
∑

k=1

|zk|
2/4)
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where N is a normalisation factor.

(i) Explain how this may be re-written as a Slater determinant.

(ii) The number density operator is ρ(z) =
∑N

k=1 δ(z − zk). Describe the behaviour of
〈Ψ0|ρ(z)|Ψ0〉 as a function of z for N ≫ 1.

(iii) Consider the N -particle wavefunction for a state with a quasi-hole at zH:

Ψ1(z1, z2, . . . , zN) = N ′
N
∏

l=1

(zl − zH)ψ0(z1, z2, . . . , zN)

where N ′ is a further normalisation factor. Calculate 〈Ψ1|ρ(z)|Ψ1〉 in the limit N → ∞
(consider zH = 0 first, and then use translational invariance).

(iv) Now introduce spin. A trial wavefunction for a system with a skyrmion of radius |λ|
at the origin is

Ψ2 =
(

z1
λ

)

1

⊗
(

z2
λ

)

2

⊗ . . .
(

zN
λ

)

N

⊗Ψ0

where
(

a
b

)

l

denotes a spinor for the l-th particle in the usual way. The spin density operator is

~σ(z) = δ(z1 − z)~σ1 ⊗ 12 . . .⊗ 1N

+ δ(z2 − z)11 ⊗ ~σ2 . . .⊗ 1N

+ . . .

+ δ(zN − z)11 ⊗ 12 . . .⊗ ~σN

where ~σl is the vector of Pauli matrices acting in the space of the l-th particle spinor, and
1l is the unit matrix acting in the same space. With the same notation, the number density
operator is now ρ(z) =

∑N
k=1 δ(z − zk)11 ⊗ . . .⊗ 1N .

Calculate
〈Ψ2|~σ(z)|Ψ2〉

〈Ψ2|ρ(z)|Ψ2〉

and discuss how your results match what you expect for the behaviour of spin polarisation
in the presence of a skyrmion.

Use the relation

log(|Ψ2(z1, . . . zN)|
2) =

∑

l

log(|zl|
2 + |λ|2) + 2

∑

i<j

log |zi − zj | −
1

2

∑

k

|zk|
2 + constant

and Laughlin’s plasma analogy to discuss the behaviour of 〈Ψ2|ρ(z)|Ψ2〉.
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