Quantum Theory of Condensed Matter: Problem Set 2

Qu. 1 In this question you are invited to demonstrate your understanding of Landau theory for Fermi liquids by deriving the relation (which follows from Galilean invariance)

$$
\frac{m^{*}}{m}=1+\frac{F_{1}^{s}}{3}
$$

between the bare mass, m, the effective mass, m^{*}, and the Landau parameter, F_{1}^{s}.
First, recall some definitions. Quasiparticle states are labelled by their momentum \mathbf{p} and $\operatorname{spin} \sigma$. Let $\delta n_{\mathbf{p}, \sigma}$ be the change in quasiparticle occupation of the state \mathbf{p}, σ relative to its occupation number in the ground state. The Landau expansion for the resulting change δF in free energy is

$$
\delta F=\sum_{\mathbf{p}, \sigma}[\epsilon(p)-\mu] \delta n_{\mathbf{p}, \sigma}+\frac{1}{2} \sum_{\mathbf{p q}, \sigma \lambda} f_{\mathbf{p q}}^{\sigma \lambda} \delta n_{\mathbf{p}, \sigma} \delta n_{\mathbf{q}, \lambda} .
$$

The effective mass is defined by $p / m^{*}=d \epsilon(p) / d p$ at $p=p_{F}$, the Fermi momentum. The Landau parameters are separated into spin-symmetric and antisymmetric parts according to

$$
f^{\uparrow \uparrow}=f^{\Downarrow \downarrow}=f^{s}+f^{a}
$$

and

$$
f^{\uparrow \downarrow}=f^{\llcorner\uparrow}=f^{s}-f^{a}
$$

(where momentum labels have been suppressed). They are also separated into spherical harmonics according to

$$
f_{\mathbf{p q}}=\sum f_{l} P_{l}(\cos (\theta))
$$

(where spin labels have been suppressed), in which $\mathbf{p} \cdot \mathbf{q}=p_{F}^{2} \cos (\theta)$ and $P_{l}(\cos (\theta))$ is the l th Legendre polynomial. Finally, they are expressed in dimensionless form by

$$
f=\frac{F}{\nu}
$$

(in which both spin and momentum labels have been suppressed), where ν is the density of states in energy at the Fermi surface.

Now consider the energy change that results when the system is set in uniform motion with a momentum per particle of magnitude p, for $p \ll p_{F}$. On elementary grounds, for a system of N particles this is

$$
\delta F=N \frac{p^{2}}{2 m}
$$

Use the Landau expansion to calculate the same quantity.
(i) Show that the change in quasiparticle number (induced when the system is set in motion) is

$$
\int \delta n_{\mathbf{p} \sigma}=\frac{3 N p}{2 p_{F}} \cos (\theta)
$$

where θ is the angle between \mathbf{p} and the direction of the uniform motion, and the integral is over momenta in the radial direction.
(ii) Show that the resulting change in energy is

$$
\delta F=N \frac{p^{2}}{2 m^{*}}+\frac{1}{2 \nu} F_{1}^{s}\left(\frac{N p}{p_{F}}\right)^{2}
$$

and that $\nu=3 N m^{*} / p_{F}^{2}$. Hence derive the relation given between m, m^{*} and F_{1}^{a}.
Qu. 2 The BCS Hamiltonian is

$$
H=\sum_{k \sigma} \epsilon(k) c_{k \sigma}^{\dagger} c_{k \sigma}-V \sum_{k, q}^{\prime} c_{k \uparrow}^{\dagger} c_{-k \downarrow}^{\dagger} c_{-q \downarrow} c_{q \uparrow}
$$

where $c_{k \sigma}^{\dagger}$ and $c_{k \sigma}$ denote fermion creation and annihilation operators for states labelled by wavevector, k, and spin, $\sigma=\uparrow, \downarrow$. The second summation, $\sum_{k, q}^{\prime}$, is restricted to wavevectors k, q of states lying within the Debye energy, $\hbar \omega_{D}$, of the chemical potential, $\mu: \mid \epsilon(k)-$ $\mu\left|,|\epsilon(q)-\mu| \leq \hbar \omega_{D}\right.$. The BCS wavefunction is

$$
|B C S\rangle=\Pi_{k}\left(u_{k}+v_{k} c_{k \uparrow}^{\dagger} \uparrow{ }_{-k \downarrow}^{\dagger}\right)|0\rangle
$$

where $|0\rangle$ is the vacuum state and $\left\{u_{k}, v_{k}\right\}$ are variational parameters, with $\left|u_{k}\right|^{2}+\left|v_{k}\right|^{2}=1$. The number operator is

$$
N=\sum_{k, \sigma} c_{k \sigma}^{\dagger} c_{k \sigma}
$$

(i) Calculate the mean particle number, $\langle B C S| N|B C S\rangle$, and its variance,

$$
\langle B C S| N^{2}|B C S\rangle-\langle B C S| N|B C S\rangle^{2}
$$

in the BCS wavefunction.
(ii) Show that the free energy of the system in the BCS state is

$$
\langle B C S| H-\mu N|B C S\rangle=2 \sum_{k}(\epsilon(k)-\mu)\left|v_{k}\right|^{2}-\frac{|\Delta|^{2}}{V}
$$

where

$$
\Delta=V \sum_{k}^{\prime} u_{k} v_{k}^{*}
$$

(iii) By minimising this free energy with respect to the variational parameters, u_{k} and v_{k}, derive the zero-temperature gap equation

$$
1=\frac{V}{2} \sum_{k}^{\prime} \frac{1}{\left[|\Delta|^{2}+(\epsilon(k)-\mu)^{2}\right]^{1 / 2}}
$$

(iv) Show that, in the weak-coupling limit in which $|\Delta| \ll \hbar \omega_{D}$, the gap equation has the solution

$$
|\Delta|=2 \hbar \omega_{D} \exp (-1 / \nu V)
$$

where ν is the density of states at the chemical potential.
Qu. 3 A one-dimensional model for localisation, which is exactly solvable, is defined as follows. The system consists of a chain of sites labelled by n. Waves propagate along this chain in both directions. The amplitudes of the left- and right going probability currents at the site n are given by the complex numbers w_{n} and z_{n} respectively. Scattering of these waves by disorder is represented in the model by a 2×2 transfer matrix, T_{l}, associated with each link between successive sites, l and $l+1$. This transfer matrix can be written as

$$
T_{l}=\left(\begin{array}{cc}
e^{i \alpha_{l}} & 0 \\
0 & e^{-i \alpha_{l}}
\end{array}\right) \cdot\left(\begin{array}{cc}
\cosh (\theta) & \sinh (\theta) \\
\sinh (\theta) & \cosh (\theta)
\end{array}\right) \cdot\left(\begin{array}{cc}
e^{i \beta_{l}} & 0 \\
0 & e^{-i \beta_{l}}
\end{array}\right)
$$

where the two phases, α_{l} and β_{l}, and backscattering strength, θ, are all real. The amplitudes obey

$$
\binom{w_{n+1}}{z_{n+1}}=T_{n}\binom{w_{n}}{z_{n}} .
$$

(i) Verify that scattering is unitary, showing that the net current along the chain is conserved by proving

$$
\left|w_{n+1}\right|^{2}-\left|z_{n+1}\right|^{2}=\left|w_{n}\right|^{2}-\left|z_{n}\right|^{2}
$$

for any w_{n}, z_{n}. Show also that, if $w_{n}=z_{n}^{*}$, then $w_{n+1}=z_{n+1}^{*}$, and obtain an expression in this case for

$$
\frac{\left|z_{n+1}\right|^{2}}{\left|z_{n}\right|^{2}}
$$

(ii) Consider an ensemble of systems in which the scattering parameter, θ, is fixed, but the phases, α_{l} and β_{l}, are random variables, independently chosen for each link from a distribution uniform between 0 and 2π. Denoting the ensemble average by $\langle\ldots\rangle$, show that, if $w_{n}=z_{n}^{*}$, then

$$
\left\langle\log \left(\left|z_{n+1}\right|^{2} /\left|z_{n}\right|^{2}\right)\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \log \left(e^{2 \theta} \cos ^{2}(\phi)+e^{-2 \theta} \sin ^{2}(\phi)\right)=2 \log (\cosh (\theta))
$$

(iii) Explain why this shows that states are localised in this model, with a localisation length

$$
\xi=\frac{1}{\log (\cosh (\theta))}
$$

Qu. 4 This question is about wavefunctions in the lowest Landau level. Let x and y be the two position coordinates in the plane, and define the complex coordinate $z=x+\mathrm{i} y$. Take the magnetic length to be the unit of length. Then, ignoring spin, single-particle basis functions in the lowest Landau level are $\psi_{n}(z)=\left(2^{n+1} \pi n!\right)^{-1 / 2} z^{n} \exp \left(-|z|^{2} / 4\right)$ with $n=0,1,2 \ldots$.

Consider the N-particle wavefunction

$$
\Psi_{0}\left(z_{1}, z_{2}, \ldots, z_{N}\right)=\mathcal{N} \prod_{i<j}^{N}\left(z_{i}-z_{j}\right) \exp \left(-\sum_{k=1}^{N}\left|z_{k}\right|^{2} / 4\right)
$$

where \mathcal{N} is a normalisation factor.
(i) Explain how this may be re-written as a Slater determinant.
(ii) The number density operator is $\rho(z)=\sum_{k=1}^{N} \delta\left(z-z_{k}\right)$. Describe the behaviour of $\left\langle\Psi_{0}\right| \rho(z)\left|\Psi_{0}\right\rangle$ as a function of z for $N \gg 1$.
(iii) Consider the N-particle wavefunction for a state with a quasi-hole at z_{H} :

$$
\Psi_{1}\left(z_{1}, z_{2}, \ldots, z_{N}\right)=\mathcal{N}^{\prime} \prod_{l=1}^{N}\left(z_{l}-z_{\mathrm{H}}\right) \psi_{0}\left(z_{1}, z_{2}, \ldots, z_{N}\right)
$$

where \mathcal{N}^{\prime} is a further normalisation factor. Calculate $\left\langle\Psi_{1}\right| \rho(z)\left|\Psi_{1}\right\rangle$ in the limit $N \rightarrow \infty$ (consider $z_{\mathrm{H}}=0$ first, and then use translational invariance).
(iv) Now introduce spin. A trial wavefunction for a system with a skyrmion of radius $|\lambda|$ at the origin is

$$
\Psi_{2}=\binom{z_{1}}{\lambda}_{1} \otimes\binom{z_{2}}{\lambda}_{2} \otimes \ldots\binom{z_{N}}{\lambda}_{N} \otimes \Psi_{0}
$$

where

$$
\binom{a}{b}_{l}
$$

denotes a spinor for the l-th particle in the usual way. The spin density operator is

$$
\begin{aligned}
\vec{\sigma}(z) & =\delta\left(z_{1}-z\right) \vec{\sigma}_{1} \otimes \mathbf{1}_{2} \ldots \otimes \mathbf{1}_{N} \\
& +\delta\left(z_{2}-z\right) \mathbf{1}_{1} \otimes \vec{\sigma}_{2} \ldots \otimes \mathbf{1}_{N} \\
& +\ldots \\
& +\delta\left(z_{N}-z\right) \mathbf{1}_{1} \otimes \mathbf{1}_{2} \ldots \otimes \vec{\sigma}_{N}
\end{aligned}
$$

where $\vec{\sigma}_{l}$ is the vector of Pauli matrices acting in the space of the l-th particle spinor, and $\mathbf{1}_{l}$ is the unit matrix acting in the same space. With the same notation, the number density operator is now $\rho(z)=\sum_{k=1}^{N} \delta\left(z-z_{k}\right) \mathbf{1}_{1} \otimes \ldots \otimes \mathbf{1}_{N}$.

Calculate

$$
\frac{\left\langle\Psi_{2}\right| \vec{\sigma}(z)\left|\Psi_{2}\right\rangle}{\left\langle\Psi_{2}\right| \rho(z)\left|\Psi_{2}\right\rangle}
$$

and discuss how your results match what you expect for the behaviour of spin polarisation in the presence of a skyrmion.

Use the relation

$$
\log \left(\left|\Psi_{2}\left(z_{1}, \ldots z_{N}\right)\right|^{2}\right)=\sum_{l} \log \left(\left|z_{l}\right|^{2}+|\lambda|^{2}\right)+2 \sum_{i<j} \log \left|z_{i}-z_{j}\right|-\frac{1}{2} \sum_{k}\left|z_{k}\right|^{2}+\text { constant }
$$

and Laughlin's plasma analogy to discuss the behaviour of $\left\langle\Psi_{2}\right| \rho(z)\left|\Psi_{2}\right\rangle$.

