Quantum Theory of Condensed Matter: Problem Set 1

Qu. 1 Consider two quantum spins, \mathbf{S}_{1} and \mathbf{S}_{2}, of magnitude S, interacting via the Hamiltonian

$$
\mathcal{H}=-J \mathbf{S}_{1} \cdot \mathbf{S}_{2}-H\left(S_{1}^{z}+S_{2}^{z}\right)
$$

with $J>0$.
(i) Use the standard theory for addition of angular momenta to find the exact energy levels.
(ii) Use the Holstein-Primakoff transformation and harmonic approximation to calculate the low-lying excitation energies.
(iii) Compare the exact and approximate calculations.

Qu. 2 Consider a Bose gas at zero temperature. If the bosons are non-interacting, all particles occupy the lowest energy single-particle state. Repulsive interactions cause a depletion of the condensate. Calculate the fraction of bosons not in the single-particle ground state, as follows.

The operators $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$ are boson destruction and creation operators for the single-particle state with wavevector \mathbf{k}. They satisfy $\left[a_{\mathbf{k}}, a_{\mathbf{k}}^{\dagger}\right]=1$. There are short-range interactions between bosons with strength parameterised by u. The Hamiltonian for N bosons moving in a d-dimensional box of volume L^{d}, with number density $n=N / L^{d}$, is to leading order

$$
H=\frac{u n N}{2}+\frac{1}{2} \sum_{\mathbf{k} \neq 0}^{\prime}\left[\left(\frac{\hbar^{2} k^{2}}{2 m}+u n\right)\left(a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}+a_{-\mathbf{k}}^{\dagger} a_{-\mathbf{k}}\right)+u n\left(a_{\mathbf{k}}^{\dagger} a_{-\mathbf{k}}^{\dagger}+a_{\mathbf{k}} a_{-\mathbf{k}}\right)\right]
$$

(i) Use a Bogoluibov transformation of the form

$$
a_{\mathbf{k}}=\cosh \left(\theta_{k}\right) \alpha_{\mathbf{k}}+\sinh \left(\theta_{k}\right) \alpha_{-\mathbf{k}}^{\dagger}
$$

to write the Hamiltonian in the form

$$
H=\sum_{\mathbf{k} \neq 0}^{\prime} E(k) \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}}+\text { constant }
$$

and show that

$$
E(k)=\left[\left(\frac{\hbar^{2} k^{2}}{2 m}+u n\right)^{2}-(u n)^{2}\right]^{1 / 2}
$$

(ii) The fraction of bosons not in the condensate is

$$
f=N^{-1} \sum_{\mathbf{k} \neq 0}^{\prime}\left\langle a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}\right\rangle
$$

Show that

$$
f=\frac{\kappa_{0}^{d}}{n} I_{d}
$$

where κ_{0} is the characteristic wavevector associated with the interaction strength, defined by $\kappa_{0}^{2}=2 m u n / \hbar^{2}$, and

$$
I_{d}=\frac{1}{(2 \pi)^{d}} \int_{0}^{\infty} d^{d} k \frac{1}{2}\left[\frac{1+k^{2}}{\left(k^{4}+2 k^{2}\right)^{1 / 2}}-1\right] .
$$

Discuss the convergence of this integral in dimensions $d=1, d=2$ and $d=3$.
Qu. 3 Consider the ground state of a one-dimensional, non-interacting system of spinless fermions. Let $a^{\dagger}(x)$ and $a(x)$ be the creation and annihilation operators for a fermion at the point x, so that the density operator is

$$
n(x)=a^{\dagger}(x) a(x) .
$$

Show that the density-density correlation function has the form

$$
\langle n(x) n(0)\rangle=\langle n\rangle^{2}\left(1-\frac{\sin ^{2}\left(k_{F} x\right)}{\left(k_{F} x\right)^{2}}\right)+\langle n\rangle \delta(x)
$$

where $\langle n\rangle$ is the mean density, and k_{F} is the Fermi wavevector.
These oscillations in the density-density correlation function are known as Friedel oscillations, and are present in any number of dimensions.

Qu. 4 The intention in this question is to guide you through the exact solution of an interacting many-body problem, the transverse field Ising model in one space dimension. The solution uses two operator transformations - the Jordan-Wigner transformation and the Bogoluibov transformation - which are useful in many other contexts.

Consider a one-dimensional lattice with site-label m. Let σ^{α}, for $\alpha=x, y, z$ be the usual Pauli spin operators. The Hamiltonian for the one-dimensional transverse field Ising model is

$$
H=-\Gamma \sum_{m} \sigma_{m}^{z}-J \sum_{m} \sigma_{m}^{x} \sigma_{m+1}^{x} .
$$

(i) Discuss what the ground state would be as a function of J / Γ if σ^{x} and σ^{z} were components of a classical unit vector.
(ii) Let a_{m}^{\dagger} and a_{m} be (spinless) fermion creation and annihilation operators. Show that these fermion operators can be written in terms of Pauli raising and lowering operators, $\sigma^{ \pm}=(1 / 2)\left(\sigma_{x} \pm i \sigma_{y}\right)$, as

$$
a_{m}=\exp \left(i \pi \sum_{j=1}^{m-1} \sigma_{j}^{+} \sigma_{j}^{-}\right) \sigma_{m}^{-}
$$

and

$$
a_{m}^{\dagger}=\exp \left(-i \pi \sum_{j=1}^{m-1} \sigma_{j}^{+} \sigma_{j}^{-}\right) \sigma_{m}^{+} .
$$

Show also that $a_{m}^{\dagger} a_{m}=\left(1+\sigma_{m}^{z}\right) / 2$
(iii) Write down expressions for $\sigma_{m}^{ \pm}$and σ_{m}^{z} in terms of the fermi operators. These constitute the Jordan-Wigner transformation.
(iv) Use these transformations to write H in terms of fermion operators.
(v) Use a Fourier transform and a Bogoluibov transformation to diagonalise the Hamiltonian. You should obtain

$$
H=-\sum_{k}\left[(\Gamma+J \cos (k))\left(\alpha_{k}^{\dagger} \alpha_{k}+\alpha \dagger_{-k} \alpha_{-k}-1\right)+i J \sin (k)\left(\alpha_{k}^{\dagger} \alpha_{-k}^{\dagger}+\alpha_{k} \alpha_{-k}\right)\right]
$$

after the Fourier transformation alone, and

$$
H=\sum_{k} \epsilon(k)\left(2 c_{k}^{\dagger} c_{k}-1\right)
$$

after both transformations, with $\epsilon(k)^{2}=\Gamma^{2}+J^{2}+2 \Gamma J \cos (k)$, where $\alpha^{\dagger}, \alpha, c_{k}^{\dagger}$ and c_{k} are fermion creation and annihilation operators.
(vi) Hence show that the ground-state expectation value, $\left\langle\sigma_{m}^{z}\right\rangle$, is given by

$$
\left\langle\sigma_{m}^{z}\right\rangle=\frac{1}{\pi} \int_{0}^{\pi} d k \frac{\Gamma+J \cos (k)}{\epsilon(k)} .
$$

