Random planar curves and conformal field theory.
Case for Support.

1 Previous track record

The PI began research in the mathematics of particle theory before switching to applications
of quantum field theory to statistical mechanics and condensed matter. In the late 1980s,
in a series of papers, he developed the fundamentals of Boundary Conformal Field Theory
(BCFT) [1,2,3] (for which he received the 2004 Lars Onsager Prize of the APS.) While it
was initially aimed at 2d critical behaviour, this work has also had important impacts on
both string theory and condensed matter physics, as well as the mathematics of CFT. In
1990 the PI applied these ideas to percolation theory, and, inspired by work of Langlands
et al [15], conjectured [4] a formula for the probability that a critical cluster spans between
two disjoint segments of the boundary of a simply connected region. This became known as
‘Cardy’s formula’. In the late 1990s, Schramm, Lawler and Werner [16] developed the theory
of stochastic Loewner evolution (SLE) partly in order to explain this formula, although it
was finally proved using another method by Smirnov [17] (for which he received the Clay
Medal). During this period the PI produced several other formulae for percolation and
related problems [5,6,7,8,9,10,11] using methods of CFT, most of which have yet to be
proved. In the last few years, among other things, he has been involved, with others, in
understanding the relation between CFT and SLE [12,13,14].

This has been one of the most successful examples of cross-fertilisation between the-
oretical physics and pure mathematics. The PI has been regularly invited to give talks
at international mathematics conferences and workshops. At present he is the only senior
researcher in the UK working in this rapidly developing area.

Oxford University provides a unique environment within the UK to study these types of
problem, both in the subdepartment of Theoretical Physics, where several groups work on
applications of CFT to string theory and condensed matter physics, and in Mathematics,
with very strong groups in string theory, analytic geometry and stochastic analysis.
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2 Description of the proposed work and its context

2.1 Background

Understanding random spatial processes has a long history of study. Many insights have
come from physics, but recently there has been much progress on the mathematical side.
Many such processes are related to equilibrium measures in statistical mechanics, but
equally important from a mathematical point of view are those generated by stochastic
processes such as Brownian motion. One of the successes of the current leap forward has
been to connect these two. The equilibrium measures are initially discrete, for example the
Ising model, random percolation, or self-avoiding walks, all on some fixed lattice with mesh
size 4, but the arguments from physics then suggest that it should be possible to make
sense of the scaling limit 6 — 0. In that limit, physics asserts, such systems correspond to
renormalisable (euclidean) quantum field theories, which, from the most pragmatic point
of view, are sets of correlation functions C'(rq,...,ry) — maps from N copies of the base
manifold (with coincident points r; = r; removed) to the complex numbers, which satisfy
certain constraints, expressed through the operator product expansion, as the points ap-
proach each other. In the language of physics these correlation functions are often thought
of as expectation values of so-called local operators with respect to some measure, but it is
in precisely defining these notions that constructive field theory gets stuck. The interesting
case of a massless theory is even more difficult from the constructive point of view: it is
believed to correspond to a conformal field theory, in which a privileged role is played by
those local operators, or rather their correlators, which are holomorphic functions of the
coordinates.

The new perspective avoids the direct construction of local operators by focusing instead
on the random planar (non-crossing, but possibly self-intersecting) curves which characterise
the random spatial process. For the Ising model and percolation these are the cluster
boundaries; for 2d Brownian motion they might be the frontiers or outer boundaries. The
essential steps forward were made in a series of papers by Lawler, Schramm and Werner
(LSW). Any such curve v which connects, for example, two points on the boundary of a
simply connected domain D can be viewed as being ‘grown’ as a sequence of sets 7, with
v¢ C vy if t < ') by a process called Loewner evolution. Instead of v; this focuses on the
conformal map ¢;, whose existence is guaranteed by the Riemann mapping theorem, and
which sends D\ 4; into D (this needs modifying slightly if v is not simple.) In the case when
D is the upper half plane, g;, suitably normalised at infinity, sends the growing tip of 4,
into a unique point a; on the real axis. Loewner showed that the time evolution dg:(z)/dt
for z € 4 obeys a simple ODE which is determined solely by a;.

In the case of a random planar curve, a; is a stochastic function. Schramm[16] argued
that if the measure on ~ is conformally invariant, in a well-defined sense, the only possibility
for a; is to be proportional to a standard 1d Brownian motion: a; = \/k By, for some £ > 0.
This is called stochastic-, or Schramm-, Loewner evolution (SLE). By direct computations,
as well as comparing with known results from 2d Brownian motion, LSW were able rigor-
ously to derive many of the critical indices of 2d critical behaviour, under the assumption
that the curves in the lattice models are conformally invariant in the scaling limit. This was
shown for site percolation on the triangular lattice by Smirnov, on the basis of his proof of



the PI's 1991 conjectured crossing formula.

It has taken theoretical physicists some time to catch up with this explosion of new
results. A step forward was made by Bauer and Bernard (and independently Friedrich and
Werner) who realised that the martingales of SLE are equivalent to the statement that
certain local operators of CFT (associated with the points where the curve is attached to
the boundary of the domain) correspond to so-called level 2 null state representations of
the Virasoro algebra (this was already conjectured by the PI in 1984.) This gave a direct
link between SLE and certain sectors of the CF'T, but by no means the complete picture.
The PI generalised this to multiple curves, and showed that the corresponding PDEs are
of the Calogero-Sutherland type.

Meanwhile among the mathematical activists the emphasis has moved away from SLE
itself to more general ways of defining conformally invariant measures on planar curves.
For example, conformal restriction asserts that if D' C D, then the measure on v in D,
conditioned to lie in D\ D', is the same as that induced by the conformal mapping D —
D\ D'. For SLE, this works only for k = %, (and on the lattice trivially for self-avoiding
walks.) However it can be applied to other situations, such as self-avoiding loops, for which
the SLE setup is inappropriate. LSW together with Sheffield have used the measure from
conformal restriction to construct other conformally invariant measures on multiple loops
(the ‘conformal loop ensemble’ (CLE)) which are conjectured to give the full scaling limit
of other models. This may be termed the ‘bottom up’ approach. In a parallel development,
Schramm and Sheffield have shown that the level lines of a gaussian free field correspond
to SLE4, and then suggested how to get other values of k: the ‘top down’ approach.

2.2 Programme and methodology
2.2.1 Overall aims of the project.

Given the current status of the field described above, and the background of the PI, there
are two separate but related strands to the proposed project:

o constructing CF'T from SLE and ils generalisations : the aim here is to give a direct
and rigorous construction of the correlation function of CFTs, as massless quantum
field theories, starting from SLE and its related ideas.

o convergence of lattice models to SLF and related measures : the aim is to prove that
certain curves in well-known lattice models (such as the Ising model) converge in the
scaling limit to SLE with a suitable value of .

2.2.2 Programme of work

Constructing CFT from SLE and its generalisations.

Among mathematicians and mathematical physicists, conformal field theory (CFT) is gen-
erally conceived of as being developed from a set of axioms, most commonly those system-
atised by G Segal. These already presuppose a fair amount of structure, in particular how
the conformal invariance is encoded in the way the Virasoro algebra acts on states. Theo-
retical physicists believe that CF'T developed in this way does indeed describe 2d massless
renormalised quantum field theory, but since such theories have never been mathematically
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constructed (except for free fermions) this is merely a pious hope. It is important to provide
a deeper basis for CFT, and SLE and its related ideas provide the hope for doing this.
Some progress along these lines has recently been made by the PI with Oxford collab-
orators Benjamin Doyon (EPSRC postdoc) and Valentina Riva (PDRA). We tentatively
identified the stress-energy tensor T'(z) of CFT in terms of the spin-2 Fourier component
[ dfe=?? of the probability that the curve v intersects a small slit (z — ee', 2 + ¢€'), in
the limit ¢ — 0, after a rescaling by ¢ %
we showed that such quantities satisfy the conformal Ward identities of CFT which un-

derlie the Virasoro algebra. The resulting CFT, however, has central charge ¢ = 0. The

In the case when conformal restriction holds,

continuation of this programme we see as proceeding in two stages:

¢ identifying a complete set of ‘local operators’ in the conformal restriction case. What
is meant here is a set of correlation functions which close under the operator product
expansion as points approach each other in a pairwise fashion. The above Ward
identity argument generalises to the case when the curve is constrained to pass around
a set of marked points {(;} in some prescribed fashion. By taking the limit, say, as
(12 = (4 — (2 — 0 we can in principle obtain an expansion in increasing powers of (is.
The leading term in fact goes like |(12|?/®
the curve. In CF'T, this couples to the ‘energy density’ operator. Other higher powers
define, in principle, the correlators of other higher-dimensional operators. What is
needed is to show that if we take 2 such pairs of points ((i,(z) and ({3, (4), generate

, reflecting the non-trivial fractal dimension of

a set of operators as above, and then allow the two pairs to come together, we do not
generate anything new. This can be done in principle by analysing the equations one
gets from conformal restriction.

o generalising the above to CFTs with central charge ¢ > 0. The most promising basis
for this is the conformal loop ensemble (CLE) mentioned above. In this construction,
a measure on multiple loops is defined through an independent Poisson process of
intensity o ¢, based on the measure on single loops. These loops of course overlap,
but for small enough ¢ they form finite clusters, and by considering only their ‘outer
boundaries’ this defines a measure on unnested multiple self-avoiding loops. A nested
set of loops can then be constructed iteratively, by regarding each loop as the boundary
of a region in the plane and repeating the above construction. It is conjectured that
the measure on self-avoiding nested loops so obtained is the scaling limit of the loops
in the lattice O(n), with a suitable relation between ¢ and n (already known in the
CFT literature.) The proposal is to use the CLE to derive, first, the conformal Ward
identities, then, if this succeeds, a complete set of local operators following the ideas
above. The candidate for the stress tensor is, as above, the spin-2 component of the
probability that a loop (now any loop) intersects a small slit. We already know this
works for a single loop, which corresponds to ¢ = 0. However, the CLE construction
both takes away parts of loops (in considering only the outer boundaries) and adds
loops back in (through the nesting procedure). It will be necessary to show that these
steps modify the Ward identities only by generating the expected terms proportional
to c.

Convergence of lattice models to SLFE.
It is known that the measures of SLE and the related CLE can be constructed somewhat



indirectly from 2d Brownian motions. What is not yet shown, except in a few cases (al-
though there is overwhelming numerical evidence,) is that random curves in lattice models
converge to these continuum measures. In a famous result, Smirnov showed that this is
the case for site percolation on the triangular lattice, and SLEg. He did this by deriving
the PI's 1991 crossing formula, and showing that it holds in an arbitrary domain. It turns
out that this is enough to prove that the driving term in the Loewner equation is v/6 times
a standard Brownian motion. The essential element in Smirnov’s proof was to identify a
quantity on the lattice which converges to a holomorphic function in the limit as the mesh
size & — 0.

It turns out that similar holomorphic object can be defined within SLE, for other values
of k. One such was described above for k = %: the spin-2 component of the probability
that the curve intersects a short slit of length ¢, scaled with a suitable power of €. For
other values of the spin s, a simple SLE calculation shows that holomorphicity holds if
k = 8/(s+1). This suggests that we try to define similar lattice objects and to prove that,
as 6 — 0, they approach holomorphic quantities. There are specific values of s for which
this programme seems feasible:

e s = 1: this should correspond to k = 4, that is ¢ = 1 and therefore the gaussian
free field. It has already been shown by Schramm and Sheffield that the level lines
of this field converge to SLE,. However there are other models which are believed by
physicists to have the same scaling limit. One is the discrete gaussian model, in which
the variables are restricted to be integers. For this model, the spin-1 object should
just be the current carried along the level lines. The central problem is to show this
is approximately holomorphic. This may follow from the detailed balance condition,
which if naively linearised gives Laplace’s equation. It would be sufficient to prove
that this linearisation is valid in the scaling limit.

* 5 = %: this should correspond to k = %, when the SLE curve is conjectured to
describe the cluster boundaries of the Fortuin-Kasteleyn clusters of the Ising model
(considered as the 2-state Potts model). In fact one can show that these boundaries
are just the world-lines of the famous Ising fermion of Onsager’s solution. This is
known to be ‘free’, that is satisfy simple linear equations, even on the lattice. These

should lead to a suitably holomorphic object in the scaling limit.

e other fractional values of s: it is known that the CFTs which are conjectured to give
the scaling limits for other values of () in the g-state Potts model contain ‘parafermion-
ic’ currents with fractional spin s. Similar objects, with spin s = 1/(m — 1), also
occur in the so-called minimal models of CF'T, the series of unitary theories labelled
by integers m. Lattice realisations of these are believed to be the RSOS models of
Andrews, Baxter and Forrester, in which the heights of the discrete gaussian model
are restricted to the values (1,2,...,m — 1). In these models it is simple to identify
candidate curves whose scaling limit is given by SLE: the challenge is to show that
the spin-s component of the probability they intersect a small slit is holomorphic in
the scaling limit. This appear to be more difficult than for the Ising case m = 3 when
it satisfies a simple linear equation. However, once again by using detailed balance,
one can hope to get a non-linear equation which simplifies in the scaling limit.



