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(Global) Quantum Quench

prepare an extended system (in thermodynamic limit) at
time t = 0 in a (translationally invariant) pure state |ψ0〉 –
e.g. the ground state of some hamiltonian H0

evolve unitarily with a hamiltonian H for which |ψ0〉 is not an
eigenstate and has extensive energy above the ground
state of H

how do correlation functions of local observables, and
quantum entanglement of subsystems, evolve as a
function of t?
for a subsystem do they become stationary?
if so, what is the stationary state? Is it thermal?
for a large but finite system, does the initial state ever
revive?
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Quantum quench in a 1+1-dimensional CFT

P. Calabrese + JC [2006,2007] studied this problem in an
infinite stystem in 1+1 dimensions when H = HCFT and |ψ0〉
is a state with short-range correlations and entanglement
HCFT describes the universal low-energy, large-distance
properties of many gapless 1d systems
1+1-dimensional CFT is exactly solvable, so we can get
analytic results for interacting systems – however, these
turn out to depend only on general properties of any CFT,
and they can be interpreted in terms of a simple physical
picture of locally entangled quasiparticles which then
propagate semiclassically
in this talk I will describe the extension of this work to finite
systems
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Results: Thermalization

suppose the energy density in the initial state ≡ effective
temperature β−1 for HCFT

let ρt(`) be the reduced density matrix of a subinterval of
length ` with β � `� L at time t

let ρ̃β(`) be the reduced density matrix of the subinterval if
whole system is in a thermal ensemble at temperature β−1

then for `/v < t� L/v, the overlap

Tr
(
ρt(`)ρ̃β(`)

)(
Tr ρt(`)2

) 1
2
(
Tr ρ̃β(`)2

) 1
2

= 1− O
(
e−4π∆(t−`/v)/β

)
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Results: Revivals

define return amplitude F(t) ≡ |〈ψ0|e−iHt|ψ0〉|
this has a universal initial decay for any CFT

F ∼ exp
(
− πcLt2

3vβ(β2 + 4t2)

)
for t� (Lβ)1/2

for a rational CFT there are partial revivals with F(t) = O(1)
when 2vt/L = integer (for periodic b.c.; vt/L = integer for
open b.c.), and eventually a complete revival with F = 1

in general F is exponentially small as L→∞, but

lim
L→∞

(1/L) logF(t)

has structure near every rational value of vt/L

Thermalization and Revivals



Initial state

CC assumed |ψ0〉 ∝ e−(β/4)HCFT |B〉 where |B〉 is a
conformally invariant boundary state, e.g. a product state
β/4 chosen so that 〈ψ0|H|ψ0〉 = Tr He−βH/Tr e−βH

this state has short-range (∼ βv) correlations and
entanglement
more generally one may take

|ψ0〉 ∝ e−
∑

j βj
∫

Φj(x)dx|B〉

where the Φj are all possible boundary operators acting on
B: this leads to a generalised Gibbs ensemble for
` < vt� L

we shall focus on the CC initial state although the results
are qualitatively correct in the more general case
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Path integral formulation: thermalisation overlap

B
<`/4

`/4

o
l

B

ρτ (`) ∝ TrL−` e−(β/4+τ)H|B〉〈B|e−(β/4−τ)H

is given by the partition function on S`, a
strip slit along (`, τ)

l `

ρ̃β(`) ∝ TrL−` e−βH

is given by the partition function on C`, a
cylinder slit along `

Tr
(
ρt(`)ρ̃β(`)

)(
Tr ρt(`)2

) 1
2
(
Tr ρ̃β(`)2

) 1
2

=
Z(S` ⊕ C`)

Z(S` ⊕ S`)1/2 Z(C` ⊕ C`)1/2

continue result to τ = it and use OPE of twist operators
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Path integral formulation: return amplitude

Finite interval, length L, periodic boundary conditions:

F(τ) = 〈B|e−(β/4)He−τHe−(β/4)H|B〉 =
Zannulus(β/2 + τ,L)

Zannulus(β/2,L)

L

`/2 + o

For a CFT a great deal is known about Zannulus:

Zannulus(W,L) =
∑
∆

|B∆|2χ∆(q) =
∑
∆̃

nB∆ χ∆(q̃)

where the sums are over scaling dimensions of (primary)
operators and

q = e−4πW/L, q̃ = e−πL/W , χ∆(q) = q−c/24+∆
∞∑

N=0

dNqN

We need to continue these formulae to W = β/2 + it.
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Initial decay and revivals

Initial decay
q̃ = e−2πL(β−2it)/(β2+4t2)

so for t� (Lβ)1/2, |q̃| � 1 and Z ∼ q̃−c/24

normalising by the t = 0 amplitude gives the result

F ∼ exp
(
− πcLt2

3β(β2 + 4t2)

)
→

t�β
exp

(
−πcL

12β

)
initial gaussian decay to a plateau value

Revivals
spectrum of H is 4π(∆ + N)/L

for a rational CFT all the ∆s are rational = N/M

so we get partial revivals at 2t/L = M/N, complete revival
at 2t/L = M
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Structure at rational t/L

it is conventional to write q = e2πiτ
(τ is not imaginary time!)

in a rational CFT the characters χ∆(q) transform linearly
under the modular group, generated by

S : τ → −1/τ (q→ q̃); T : τ → τ + 1 (q→ e2πiq)

Any curvilinear trian-
gle is mapped back
into the principal re-
gion (grey) by the
modular group

in our case τ = −2t/L + iβ/L
as t increases we pass close to every rational point on the
real line which gets mapped back to q̃� 1
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Example: Ising model
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Quasiparticle picture

Quasiparticle configuration leading to the feature at t = L/4:

Lx

t

0

exponentially suppressed because the two pairs of
particles a distance O(L) apart must be entangled with
each other
if 2t/L = p/q a similar construction can be made with q
pairs
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Non-integrable perturbation of CFT

exact revivals depend on integer spacing ∝ 1/L in CFT: do
nonintegrable but irrelevant deformations change this?
example: H = HCFT + λ

∫
TTdx

to first order an eigenvalue at 4π(∆ + N)/L is shifted by an
amount ∼ λ(∆ + N)2/L3 (but the degeneracies remain)
result: peak in F at t = nL/2 is broadened by an amount
∼ (λn)1/2
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Summary

in a quench from a short-range entangled state in a
1+1-dimensional CFT, a region of length ` thermalises
(more generally goes to a GGE) after a time `/2v, in the
sense that its reduced density matrix becomes
exponentially close to that of a thermal system (GGE)
however, it also becomes entangled with the rest of the
system, and after a time (L− `)/2v it starts to
dethermalize, leading to a (in general, partial) revival of the
initial state at time L/2v (for periodic bc)
so was it ever thermalized in the first place?

Thermalization and Revivals



Summary

in a quench from a short-range entangled state in a
1+1-dimensional CFT, a region of length ` thermalises
(more generally goes to a GGE) after a time `/2v, in the
sense that its reduced density matrix becomes
exponentially close to that of a thermal system (GGE)
however, it also becomes entangled with the rest of the
system, and after a time (L− `)/2v it starts to
dethermalize, leading to a (in general, partial) revival of the
initial state at time L/2v (for periodic bc)
so was it ever thermalized in the first place?

Thermalization and Revivals


