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1. Introduction

1.1 Outline and aims

In the last few years, there has been an explosion of interest and of progress in two-
dimensional conformal field theory. The motivation for studying this subject is three-fold:
(1) for its intrinsic mathematical interest, which is fascinating in itself, and which reveals
deep connections with other diverse branches of mathematics; (2) because conformal field
theories correspond to ground states of string theory; and (3) because statistical mechanics
models at a critical point are conformally invariant on large distance scales. The questions
to be asked in conformal field theory are thus dependent on ones point of view, although it
is rather easy to forget this when following up an interesting idea. As a result, this subject
has provided some of the most prolific examples of interdisciplinary cross-fertilization in
theoretical physics.

In these lectures, I want to approach the subject from the third point of view. We
shall therefore always try to have in mind the questions that statistical mechanics tries
to answer when critical phenomena are discussed. These include (a) the classification of
universality classes, and, equally important, the development of criteria to decide whether
a given system is in a particular universality class; (b) the calculation of critical exponents;
(c) the calculation of other universal amplitudes, including finite-size effects at criticality,
and ratios of thermodynamic quantities away from criticality; and (d) the calculation of
correlation functions, both at and away from criticality.

As with any branch of theoretical physics, the ultimate test of these results is experi-
ment. Unfortunately, precise real experiments on critical phenomena in two dimensions are

notoriously difficult. In addition, the number of systems available to the experimentalist



is small. While there was a great deal of excitement ten years ago in comparing the pre-
dictions of the Ising model and the 3-state Potts model to experimental data on adsorbed
systems, the new models discovered since then have found little practical application.* As
a result, nearly all the tests of the predictions of conformal field theory have been against
numerical experiments. While these tests have been stringent and successful in confirm-
ing the concepts of conformal invariance, the subject could definitely benefit from closer
contact with real experiments.

It would be impossible to cover even the essentials of this rapidly growing field in nine
lectures. I have therefore made some rather arbitrary selections, partly dictated by my
own interests and (lack of) expertise in various areas. I shall assume some of the basics
of conformal field theory ¢ la Belavin, Polyakov and Zamolodchikov (BPZ) [1] which will
be covered in Ginsparg’s lectures. However, I shall endeavor to state clearly the results
which T am using. Many of the basic ideas I shall cover are independent of the value of
c¢. When I want to specialize, for reasons of brevity I shall restrict myself to theories with
¢ < 1. Although there has been a lot of recent work on theories with ¢ > 1, much of it
is modelled on the more complete results for ¢ < 1, which therefore form a good starting

point.

1.2 Statistical mechanics and quantum field theory

Let us begin by reviewing the connection between these two subjects, with the partial aim
of avoiding any confusion in terminology later on. In classical statistical mechanics, one of

the objects of interest is the partition function
Z = Tre /KT, (1.1)

where H is the classical Hamiltonian. We shall usually absorb the factor of (kT)~! into

‘H. The analogous quantity in Euclidean quantum field theory is the generating function

7 = /D¢e—5[¢]/h, (1.2)

where S is the action, depending on a set of local fields [¢]. The obvious similarity between

these expressions deepens when we realize that (1.2) must be defined through some kind of

* The spin chains to be discussed in Affleck’s lectures form a notable exception.



regularization procedure of the short-distance behavior, and that a natural way to do this
is to put the quantum field theory on a lattice, with some microscopic spacing a. Although
quantum field theories have continuous fields as degrees of freedom, while statistical me-
chanics systems usually involve discrete quantities like Ising spins, this difference becomes
irrelevant close to a critical point. This idea is based on the concept of universality and its
underlying framework, the renormalization group. This states that when the correlation
length & > a, the behavior of the correlation functions over distances much larger than a
is independent of the microscopic details of the Hamiltonian or action, whether it describe
a discrete statistical mechanics system or a lattice quantum field theory, and that these
correlation functions are identical to those of a corresponding continuum quantum field
theory, when suitably normalized. Thus the problem of understanding all possible univer-
sality classes is equivalent to that of classifying possible continuum quantum field theories.
As we shall see, conformal invariance strictly speaking applies only to continuum theories,
and so its applications to statistical mechanics are inevitably framed in the language of
quantum field theory.

In the continuum limit, the correlation functions contain no dependence on the mi-
croscopic distance a. Exactly at a critical point, the correlation length ¢ is infinite, and
the corresponding quantum field theory is massless. The local renormalized fields are usu-
ally referred to as scaling operators. This terminology is a little confusing, because in
Euclidean quantum field theory they are not operators, but only become so when we go
to a Hilbert space formalism for the field theory. The 2-point function of a renormalized

operator which is a scalar under rotations has the power law behavior

(6(r)8(0)) = (slr[)7*", (1.3)

where = is the scaling dimension of ¢. This equation fixes the normalization of ¢. The
inverse length k is the usual arbitrary length scale which must be introduced to define
a renormalized massless theory. At the risk of some equations not looking dimensionally
correct, we shall take k = 1. The renormalized operators are related to those defined on

the lattice by
¢(T) ~ axqblattice(r), (14)

up to some non-universal constant of order unity. The meaning of (1.4) is that correlation

functions of either side are asymptotically equal for distances > a.



Scaling operators may have non-trivial properties under rotations, in which case (1.3)
is modified. In two dimensions, where we shall be living exclusively in these lectures, this

modification is easy: in complex co-ordinates (z, z)

(6(=,2)9(0,0)) = =~ z72", (1.5)

where z = h + h is the scaling dimension, and s = h — h is the spin of ¢. The real
numbers (h,h) are called (confusingly) the complex scaling dimensions of ¢. In string
theory, they are referred to as the conformal weights. Note that A is not necessarily the
complex conjugate of h.

A very useful concept in statistical mechanics is that of the transfer matrix. It is
easiest to define this by an example. Consider an Ising model on a square lattice. Take a
slice of the lattice from the row y = yo to the row y = yo + Ay, and, fixing the spins on
these two rows to assigned values, calculate the partition function of the slice. The result
is an element of the transfer matrix T, whose rows are labelled by the state of all the spins
along y = yo, and whose columns are labelled by the state of the spins along y = yo + Ay.
Usually, Ay is one or a few lattice spacings. The transfer matrix is an operator acting on a
Hilbert space, on which the other local quantities which become scaling ‘operators’ ¢(z, y)
in the continuum limit act like bona fide operators 95(:1:) The partition function Z in (1.1)
can now be calculated by raising T to the appropriate power and taking the trace.

If we now dissect the path integral in (1.2) in the same way, we are doing nothing but
following the standard route from the path integral formulation of a quantum field theory
to the Hamiltonian formulation, quantized on constant ‘time’ surfaces y = const. Thus we
see that, in the continuum limit, the quantum Hamiltonian is essentially the logarithm of

the transfer matrix:

T = e 2vH, (1.6)

We shall try to avoid confusing the classical statistical mechanics Hamiltonian H and
the quantum Hamiltonian H for the quantum field theory, by referring to the former as
the action, and denoting it by 5.

Note that we could have sliced up the plane in other ways to arrive at a Hilbert
space description. The notions of slicing in polar co-ordinates (r, #) parallel to the curves
r = const. or § = const. will arise elsewhere in these lectures, corresponding to the radial
quantization of conformal field theory, and the corner transfer matrix of Baxter, respec-

tively.



1.3 Scale invariance, conformal invariance and the stress tensor

The power law behavior (1.3) of the correlation functions corresponds to the transformation
law ¢(r) — b%¢(r') under a dilatation, or scale transformation, r — r’ = b~'r. This
non-trivial behavior arises because of the existence of the microscopic length a needed
to regularize the theory. One way to picture the physical significance of the co-ordinate
change r — r' is to imagine the lattice as imposing a co-ordinate grid on the plane. Under
a renormalization group transformation, a is increased to ba, and the short-wavelength
degrees of freedom are integrated out of the partition function, in such a way as to leave
the large distance physics unchanged. In doing this, the action S will be modified, unless it
happens to lie at a renormalization group fixed point S*. Thus the co-ordinate change r —

r’ is not simply a relabelling of the points of the plane, but carries physical implications.

Figure 1.1 Generalized RG transformations correspond-
ing to (a) a scale transformation (b) a confor-
mal transformation (c¢) a general co-ordinate
transformation. In each case the new lattice
gives a grid with respect to which the co-
ordinates r’ of a given point are defined.

Let us now consider a general infinitesimal co-ordinate transformation r#* — r*+at (r)

There is no reason for the action to remain invariant under such a transformation, even if



it initially lies at a fixed point. Assuming that the change depends in a local way on the

function a*(r), the most relevant term which can enter depends on the derivatives 9" a":

1

or

05 = Tyu(r) 0" a”(r) d*r. (1.7)

This defines the stress tensor, which is the Euclidean version of the (improved) energy-
momentum tensor. The factor of (277)_1 is put in to avoid such factors elsewhere in the
calculations. Eq.(1.7) has a simple physical interpretation: the interactions of the statis-
tical mechanics model give rise to an effective elasticity of the medium. The contribution
of this to the Hamiltonian (action) is simply the integral of the stress tensor contracted
with the strain tensor 0*a”.

In a Hilbert space formalism, the quantum Hamiltonian H is related to the integral of
the ‘time-time’ component of T),, over the space-like curve on which we choose to quantize
the theory. For example, in the usual row-to-row transfer matrix formalism discussed in

Sec. (1.2), ,
H= o /Tyy(:x)dx. (1.8)

To derive this, consider the response of the transfer matrix acting from row y = y; to
row y = ys to a co-ordinate change z' = z, y' = y + aH(y — y2), where H(y — y3) is a
step function at ys, and y1 < y2 < y3. Eq.(1.8) is of course the Euclidean version of the
familiar quantum field theory statement that the Hamiltonian is the space integral of the
time-time component of the energy-momentum tensor.

The tensor 7T, may be decomposed into an antisymmetric piece, a diagonal piece, and
a traceless symmetric piece. The former will always vanish if the system is rotationally
invariant. We shall always assume this is the case. Systems in statistical mechanics are
of course usually defined on a lattice, but in most cases rotational invariance is regained
at large distances, because the operators which break this symmetry are irrelevant in the
renormalization group sense. In some cases, the lattice theory may have a trivial anisotropy
which may be removed by an anisotropic rescaling of distances. An example is the Ising
model on a square lattice with unequal couplings in the horizontal and vertical directions.
In some other models, on the other hand, the correlation lengths in different directions
actually diverge with different exponents as we approach criticality. These models are
intrinsically anisotropic, and we shall have nothing to say about them.

The trace © = T} must vanish at a critical fixed point, because then 4.5 = 0 under a

dilatation where a” o r#. However, this statement, together with the locality of T),,, also



implies the vanishing of § S under all transformations such that the traceless symmetric part
of 0"V vanishes. Such tranformations correspond locally to a rotation plus a dilatation.
This is the set of conformal transformations. In complex co-ordinates, d;:a* = 9.a* = 0.
Thus a® and o are respectively analytic and antianalytic.

In two dimensions, complex co-ordinates are very useful for working with the stress
tensor. In general, T}, has three independent components T' = T.., T=T.. and O =
4T.; = 4T;.. The conservation law 0*T),, = 0 reads

32T —|— %aZ@ — 0,

] (1.9)

At a critical point, @ = 0, so that T depends only on z, and T only on Z.

The stress tensor may be viewed as the generator of scale and conformal transforma-
tions, in the following way. Consider a transformation r* — r# + o*(r) which reduces to
a combined scale transformation and rotation, with a(z) = az, inside the disc |r| < €,
and for which o = 0 for |r| > €, with €5 > €. This latter condition ensures that the
system is not disturbed at infinity. In the region ¢ < |r| < €3, a¥(r) may be taken to be

any differentiable function.

Figure 1.2 The transformation r#* — r#* + at corre-
sponds to a scale transformation and rotation
for |r| < €, and reduces to the identity for
|T| > €9.



If we imagine performing some generalized renormalization group transformation cor-
responding to this rescaling, the action will change in the region ¢; < |r| < €2 by an amount
given by (1.7). On integrating by parts, we find a bulk contribution proportional to the
integral of a*9T),, over the annulus, which must vanish because o is arbitrary there —
hence 0"T,, = 0 — and two surface contributions. That from |r| = e; vanishes because

at = 0 there, and we are left with

1 « a _

08 = ~or TypotdS" = — T(z)zdz — — T(z)zdz. (1.10)
s
|

r|=€1 2m |r|=€1 2mi |r|=¢€1

On the other hand, if we consider how a correlation function (¢(0,0)...) of a scaling
operator at r = 0 with others outside |r| = €, behaves under such a transformation, we

have

(6(0,0)...)s = (1 +a)"(1+a)"(4(0,0)...)s4ss. (1.11)
Expanding the term .5 out of the action, and comparing coefficients of a and a,

1
9 2T(2)¢(0,0)dz = he¢(0,0), (1.12)
)
together with a similar equation involving T and h. Thus the operator product expansion

of T(z) with ¢ has the form

T(z)$(0,0) =--- + :—2¢(0, 0) + éazﬁb((), 0)+---, (1.13)

where the 27! term comes from a similar argument to the above using a translation rather
than a scale transformation. The terms exhibited in (1.13) occur in the operator product
expansion of T' with any scaling operator. As shown by BPZ, and discussed elsewhere in
these lectures, there exist primary operators for which the displayed terms in (1.13) are
the most singular ones. For these operators, we may consider a general transformation o*
which is conformal for |r| < €1, that is a* = a(z), and once again reduces to the identity
for |r| > e;. Running the above argument backwards, we then find that a primary operator

transforms under an infinitesimal conformal transformation according to

H(2,2) = (1 + ha'(2) + ha'(2) )p(2', 2'). (1.14)

For a finite conformal transformation z — 2z’ = f(z), the integrated version of (1.14) is

d(z,2) = (f' ()"(f'(2)" (2", 2"). (1.15)




The stress tensor T(z) is a scaling operator with scaling dimensions (2,0). Unlike
other operators, we cannot arbitrarily normalize it as in (1.3) because its normalization is
already fixed by its definition. Its 2-point function therefore has the form

T()T(0)) = L2 (1.16)

]
We take this as the definition of the conformal anomaly number or central charge c. It is
a universal number for the the particular fixed point theory we are discussing. Eq. (1.16)
implies that T'(z) is not a primary operator. The singular terms in the operator product
expansion of T with itself are

c/2

4

1

T(2)T(0) = <= + ZQ—ZT(O) +T(0)+---. (1.17)

The first term implies the presence of an anomaly in the transformation law for 7' under

an infinitesimal transformation. Generalizing the arguments above, we find that
T(z) = (1 + 2a(2))T(<') + éa’”(z). (1.18)

We shall need the integrated form of this for a finite conformal transformation z — 2’ =
f(2). This is given by
T(z) = (f (=)’ T() + 751, 2}, (L19)

where {2/, z} denotes the Schwartzian derivative

B f///f/ _ %f”2
= T

This result is very useful for calculating (T'(z')) given that we know (T'(z)). In the full

{2} (1.20)

plane or the upper half plane, for example, the latter quantity vanishes by translational
invariance.

Although it is quite easy to verify that (1.18) is the infinitesimal form of (1.19), the
reverse step is not so obvious. It is easier to understand the origin of the appearance of
the Schwartzian derivative within a particular model. Since we shall be using this model

a great deal in what follows, let us describe this calculation in some detail.

1.4 The Gaussian model



This is described, in the continuum limit, by the action for a free scalar field ¢(r)

s= L [0 o, (121)

where ¢ is a dimensionless coupling constant. This model is critical for all values of g. The

Green’s function G(z,2) = (¢(z, 2)$(0,0)) is given by
G(z,z) — G(0,0) = —(1/2g)Inz — (1/2¢g) In z + const. (1.22)

Note that ¢ is not a scaling operator, but 0¢ = 9.¢ and 0¢ = 0:¢ are. Classically, we
may find the stress tensor by letting r# — r# 4+ a#(r) and comparing with (1.7). We find

T= _g(a¢)27 T = _9(895)27 (1.23)

with @ = 0, as expected. However, the expressions above contain singular terms as the
cutoff a — 0, reflecting the infinite zero-point energy of the theory. The easiest way to

regularize them is by point-splitting: the expressions above are replaced by the limits

O = T, Loae_te_ L
(00)" = Jim |09(= + 58)00(= = 56) = 5 |

(1.24)

together with a similar definition for T. Let us now calculate ¢ for this theory. This is
simple using Wick’s theorem. The subtractions in (1.24) mean that we ignore terms where
contractions occur between the points which become identical as § — 0. The surviving

contractions are shown in Fig.1.3.

Figure 1.3 Wick contractions involved in calculating (T'T')
in the Gaussian model.



We obtain

(T(21)T(22)) = g* -2 <i>2 (

1
2g 47

— 1.25
p—— (1.25)
from which we read off ¢ = 1, independent of g¢.

Let us now see how this T transforms under a finite conformal transformation z —

2! = f(z). 0¢ transforms as a primary operator: 0¢(z) — f'(2)0¢(f(z)). Thus

1 1 , 1 1 1
T(e) > glim |7z + 30)F'(z = 3908(F(= + 301060z = 36) -~ 5]

~ lim [f’(z 30— ) (T(f(z)) + 1/2 5))2> _ %] |

= (F= + 30)— -~ 5
(1.26)
We see that the anomalous term is
l 15 ! o 15 1
lim [ 7z +1 ALEE 4 )__ —] : (1.27)
620 [2(f(z + 50) — f(z — 36))7 202
The algebra is left as an exercise. The result is
mogr 3 pn?
i# Y (1.28)
12 f! 12

confirming (1.18) with ¢ = 1.

2. Finite-size scaling of the free energy

2.1 Finite-size scaling at criticality

The finite-size scaling hypothesis [2] has been very powerful in the interpretation of of nu-
merical studies of critical behavior, which have perforce been carried out in finite systems.
Its statement is simple. If some quantity (e.g. the susceptibility x) diverges in the infinite

¢4722  where ¢ is the correlation length (and, in this case, z is the scaling

system like
dimension of the magnetization operator), then, in a finite system of characteristic size L,

it will be given by the scaling law

X(&, L) = L2 ®(L/¢), (2.1)

where ® is some universal scaling function. At the critical point, where £~! = 0, this

Ld—2r

implies that the susceptibility is proportional to . The finite-size scaling hypothesis



has been put on a firm basis within the e-expansion [3], and has been shown to be valid for
systems below their upper critical dimensionality, when they are equivalent, in the critical
region, to a renormalized field theory.

The scaling of the reduced free energy F' = —In Z at criticality is less well understood.

One expects an expansion for large L which, in two dimensions, begins
F=AL>+BL+--- (2.2)

The coefficients A and B are respectively the bulk free energy per unit area, and the bound-
ary free energy per unit length (in the case where the system has a boundary). Neither
of these are expected to be universal (since they clearly have a dimensional dependence),
and thus they are not of great theoretical interest. The corrections to (2.2) were originally
supposed [4] to be O(L?), and therefore to be universal, depending only on the shape of
the system, and, perhaps, the general type of boundary condition. However, we shall show
that, at least for d = 2, there exists in general a term O(In L) in (2.2). Its coeflicient is in
general highly universal, being proportional to the value of ¢ and otherwise depending only
on the topology of the manifold on which the theory is defined. A more detailed version
of the arguments of this chapter appears in Ref. 5.

To understand the origin of this term, let us consider a theory defined on some manifold
M with a given metric, with respect to which the characteristic size of the system is L.
The metric may be flat or curved, and the boundaries M may have curvature also. (We
shall ignore the thorny question of how it is possible to define the continuum limit of a
lattice theory in such a general curved geometry.) Under a global dilatation r# — (1+a)r#

the response of the action is, by the definition (1.7) of the stress tensor

«

58 = O\/qgd*. (2.3)

_ﬁ M+OM
In computing the change in the free energy, we must be careful. According to our renor-
malization group interpretation of such a dilatation, the total partition function must be
invariant under such a rescaling. Thus, if the free energy of the system is denoted by F(L),

we have, to first order in «,

e~ F(L) — o= F(L+81)=(8S) (2.4)

so that the change in the free energy is minus (65). We thus see that

oF 1
L 27 Jamsom

(O)\/gd?r, (2.5)



so that there will exist a term in F(L) proportional to In L if the integral of (@) over the

whole manifold, including its boundary, is non-zero.

2.2 The trace anomaly

In Sec.(1.3) we showed that @, and in particular its expectation value (@), vanish at a
critical point as a result of scale invariance. However, this argument was valid only in the
plane. In a curved geometry we would no longer expect (@) to vanish, since the curvature
provides a scale. In fact, if we assume that (@) can depend only on the local geometry,

then dimensional analysis and general co-ordinate invariance imply that
() = AR, (2.6)

where R is the scalar curvature, and X is a constant. The left hand side of (2.6) is called
the trace anomaly [6]. It is anomalous in the sense that it may appear to vanish when we
look at the theory classically, that is we ignore the fact that it must be regulated, thus
introducing a scale into the theory. A word about terminology here: the term ‘trace’ or
‘conformal’ anomaly is also used to describe a non-zero value for (@) in flat space, when we
are considering a theory away from a renormalization group fixed point, which, classically,
looks as if it should be scale invariant. An example is a Lagrangian quantum field theory
with a dimensionless coupling constant. From our point of view, which is not restricted to
theories described by a Lagrangian, this kind of behavior is not particularly anomalous,
but merely results from the theory not being at the fixed point.

The constant A in (2.6) turns out to be related to the central charge ¢ as defined by
(1.15). The simplest way to see this is to consider the limit of weak curvature. We now
describe this calculation. A momentum space version of this argument appears in Green,
Schwarz and Witten [7].

A co-ordinate transformation of the type discussed in Sec.(1.3) may also be viewed

as a change in the metric

OGuv = Quw + Qpp,s (2.7)
so that the change in the action is given by

§S = —%/Tuyé.g””dzr. (2.8)



However, this expression has a wider range of applicability than (1.7), because it may also
apply to changes in the metric corresponding to true changes in the geometry, not only
to a co-ordinate change. As discussed in Sec.(2.1), within the interpretation of such a

deformation which we adopt throughout these lectures, this means that

= Tr exp(—9) . (2.9)

new geometry old geometry

Tr exp <—S + (1/4m) / Tu,,csg””d%“)

Let us use this to calculate the response (§7),,) in the expectation value of the stress tensor
to an infinitesimal variation of the metric away from its flat space value, in some localized
region:

(0T (2,2)) = —1/477/<Tu,,(z,Z)TM(Z',z’)>5g)‘a(z’,z’)d22’. (2.10)

The non-zero components of the correlation function of the stress tensor in the plane are

(TT) = (¢/2)(z — 2")™* and (T T) = (¢/2)(z — z')~*. Thus

c 592,2(2/’2/)
87 (z —2')t

(0T(z,2)) = H((z — 2")(z — Z") — a®)d*/, (2.11)
together with a similar equation for (§T). In writing (2.11) we have inserted a step func-
tion short-distance cutoff to render the integral finite. Because of this, (T') has explicit

dependence on z:

B c Sa** 2/72/ / /
0:(T(z,2)) = 5 %5“2 — /| —a?)d%'. (2.12)

zZz

Expanding dg** in powers of 2’ — z and 2z’ — z, the leading term as a — 0 which survives

the angular integration is
0:(T(2,2)) = — =m0 g7 (2, 2). (2.13)
s

A similar equation holds for 9,(T(z, 2)). Now the requirement T, = 0 that the stress

tensor be conserved implies, to first order in dg,,,, that

aET + azTEZ - 07

_ (2.14)
agng —|— 8ZT — 0
We therefore expect non-zero contributions to
C 2 2z
(T5,) = ——=0;9"" 4+ - -~ (2.15)

48 ¢



and

(T.z) = —éaﬁg” e (2.16)

We missed these contributions to (2.10) because we failed to recognize that the in-
troduction of a cutoff explicitly breaks the conformal invariance in the plane, so that the
correlation functions (7T3,T),,) are not necessarily zero, for separations of O(a). In the
continuum limit, these may become derivatives of delta functions, giving a the non-zero
contribution to (T%.) shown above. There may also be contributions involving ¢** and
g%*. The form of these is fixed by the requirements that T:, = T,; and that (©) = 4(T%.)

should be invariant under coordinate reparametrizations g"” — g"” + a*¥ + a¥#*. The

result is that the complete form of Egs. (2.2.10,2.2.11) is

(T:.) = (T.:) = (0%2g7* — 20,0,97% + 92g7%). (2.17)

c

48
One can now go back and check that the terms which must then be introduced in (T") and
(T) in order to satisfy (2.14) are local in §g*?, so that the argument is consistent. We

recognize the expression appearing in parentheses in Eq. (2.17) as the scalar curvature R,

to first order in dg"”. From this we find the coeflicient in (2.6) to be

A= —c/12. (2.18)

2.3 Systems with a boundary

What happens if the manifold has a boundary? In that case, even if the metric is flat, the
extrinsic curvature K of the boundary provides a scale, which may result in a non-zero
value of (@). Such a term would be concentrated in a delta-function on the boundary.
Thus

(@) =\NKé(zy), (2.19)

for some constant \’. We can calculate its value by the same kind of modified perturbation
theory used above. Consider now a geometry differing infinitesimally in a localized region
from the upper half plane. Eq.(2.10) again applies, but we now have to use the 2-point
function of the stress tensor in the upper half plane.

So far we have not discussed statistical mechanics systems with boundaries. In a spin

system, we may imagine two simple kinds of boundary condition: (a) where the spins



on the boundary are free, and (b) where they are all fixed to some value. Investigations
of these kinds of boundary conditions using the renormalization group show that, in the
continuum limit, they are equivalent to either the condition ¢ = 0, or to ¢ o (z)~",
respectively, on the order parameter field [8]. The main feature of these two conditions is
that they contain no length scale, and are therefore conformally invariant. We may thus
hope to apply conformal invariance to systems with boundaries.

In the development of the theory in the full plane, an important step was writing the
change in the action (1.7) as a contour integral, and the lack of dependence of the result on
the precise contour. This is equivalent to the statement that the stress tensor is conserved.
In the semi-infinite system, the contour will include part of the real axis. We are, however,
required to consider only those tranformations which preserve the real axis, i.e., for which
a?(z,0) = 0. The remaining component o will couple to T,,. For the result to be contour
independent, we must then have T, = 0 on the real axis. In complex co-ordinates, this

means that 7 = T (see Fig.2.1).

Figure 2.1 Modification of the contour of Fig.1.2 for a
semi-infinite system. Part of the contour now

runs along the real axis. The contribution
from this vanishes if T = T.

But T(z) is an analytic function of z in the upper half plane. Therefore T(z) is the

analytic continuation of T'(z) to the lower half plane. This implies that the correlation



function (TT) is no longer zero, in fact
(T()T(2) = (¢/2)(= = Z) . (2.20)
Thus (2.11) is replaced by

(6T(2,2)) = —— / 092 g s — 27y

_8_7rc (z(gg—zjéi‘t . (2.21)
o [ B e,

where now the integrals run over only the upper half plane. It is simplest to rewrite this
as a single integral over the whole plane, which has the form of (2.11) with §¢** replaced
by h**, where

h*(a,y) = g% (x,9)H(y) + 97 (=, —y) H(—y), (2.22)

and H(y) is the step function, equal to 1 for y > 0, and zero for y < 0. Repeating the
steps leading to (2.15), we see that (T%.) is given by a similar expression, with ¢g** replaced
by h**. Note that h** has a discontinuity across y = 0 of ¢** — ¢** = 4ig,,(z,0), and its
derivative with respect to y has a discontinuity of 2(¢zz 4(2,0) — gyy 4(z,0)). Introducing
the antisymmetric step function sign(y) = 2H(y) — 1, ~** may then be decomposed as

h**(z,y) = 2igay(z,0) sign(y) + (gaz,y(7,0) = gyy,y(z,0))y sign(y) + regular piece. (2.23)

The significance of this decomposition is seen more readily in momentum space: the first
two terms behave as p, — oo as p;l and p;2 respectively, while the regular piece is
0(p;2). The contribution to the Fourier transform of (T%.) is then found by multiplying
by p? = i(pf/, —pz —2ipypy). A d(y) term in (T3, ) corresponds to a constant term surviving
in the limit p, — oo in its Fourier transform. Thus the regular piece cannot contribute to
the delta function, and we may neglect it. The leading term as p, — oo comes from pz
acting on the first term of (2.23). However, this is pure imaginary, and can be shown to
be cancelled when the result is added to (T%z). The finite pieces correspond, in real space,

to the terms

3(-210,0,)2ig2, Sign(y) — 102 (ger.y — g0}y sian(y). (224)
Recalling that the components of the metric in the above expression contain no y-
dependence, we then find a delta function contribution to (@) = 2(T%.) + 2(T.z) of

c 1
_65@)(91’%1’ - Z(gm,y - gyy,y))- (2.25)



However, as in the bulk calculation, this is not the whole story. There may be terms in (@)
depending on g** = gz + gyy which are not yet included. These contributions are fixed by
the requirement that the delta function term in (@) should depend only on the extrinsic
curvature and be insensitive to coordinate changes which leave this qauntity invariant.
Now the extrinsic curvature is given by

. 1
K = gpyo(z,0) — §g”’y($’0)’ (2.26)

to lowest order in g,,. A simple way to see this is to consider the coordinate transformation

2’ =z + apna® 4 2a192y + agy® + -
(2.27)

y' =y +bi1z” + 2biazy + baoy® + - -

which maps the line y = 0 into y’ = by2’> + -+, so that K = 2b;;. On evaluating the
derivatives of g;; = 6;; + :vQJ + ;r;;ﬂ, it 1s then straightforward to verify that the right hand
side of (2.26) does indeed give the correct result.

Therefore we must add a term to (2.25) which depends only on g, + gy, and its
derivatives, so that the result only depends on the combination in (2.26). Clearly this is
possible, by adding i(gxr,y + gyy,y) to the second factor. We then obtain the result (2.19),
evaluated to first order in the perturbation of the metric, with \' = —¢/6.

Combining the bulk and surface contributions, the integrated trace anomaly is

/ 0. /gd’ :—i{ / Ry/gd’r +2 / de]. (2.28)
M+M 12 [/ m oM

The expression in square brackets in this equation is well known in differential geometry:
it is given by the Gauss-Bonnet theorem to be equal to 4wy, where x is the Euler number,
a topological invariant of the manifold. It is equal to 2 — 2h — b, where A is the number of
handles, and b is the number of boundaries. Putting together all these results (2.1.5,2.3.10)

we then find the simple result for the logarithmic term in the free energy

Fr X
6

InL. (2.29)

This is only the first example of the ubiquity of the number c.

2.4 Corners on the boundary



The above analysis assumed that there are no singularities, either in the metric or on the
boundary. Let us consider now the case of a corner on the boundary, with internal angle
~. Assuming once again that the contribution to (@) may be expressed in terms of the
local geometry, we are free to choose a simple geometry in which to calculate the possible
delta-function contribution from the corner. The simplest is an infinite wedge, related to
the upper half plane by the conformal mapping w = 2z?/7. Calculating the Schwartzian
derivative (1.3.12, 1.3.13) and using the fact that (7'(z)) = 0 in the upper half plane, we

find that the expectation value of the stress tensor in the wedge geometry is

. C
 24w?

(T(w)) 1= (=/v)?), (2.30)

together with a similar expression for (T(w)). The fact that (T) behaves like 1/w? as
w — 0 implies that (@) has a delta-function singularity at w = 0. To see this, consider

the integral of (@) over a small neighborhood of the corner:

2 81{]” 2 n v
(0)d%w = 5o (T )dw = | w(T,,)ds”, (2.31)

where we have used the conservation of T),,. The last integral, when evaluated in complex
coordinates, becomes
—i / w(T (w))dw + i/w<T(w)>dw. (2.32)

Substituting the explicit expressions for (T') and (T'), the contribution to the integrated
trace anomaly from the corner is (¢y/12)(1 — (7/~)?). This implies that the contribution
to the logarithmic term in the free energy from the corner is

AF = % (1= (7/7)*)InL. (2.33)

It is interesting to note that this result is not what one might expect to obtain from
(2.19) with a delta function singularity in the curvature, which would give an expression
similar to the above, but with the factor in parentheses replaced by 2(1 — (x/~v)). These
two expressions do, however, agree in the limit v — 7, so that if we approximate a smooth
boundary by a sequence of polygonal ones, we do get the correct result. Another way of
putting this is to say that when there are corners on the boundary, the logarithmic terms
in the free energy do not add up to give a result proportional to the Euler number.

A similar analysis may be applied to the case of a conical singularity in the bulk metric.

The above calculation may simply be taken over, except that the conformal mapping is



now w = z¥/27 from the whole z-plane. The semi-angle subtended by the cone is then
arccos(y/2m). The result for the contribution to the free energy from the conical singularity
is then

AF = 1—7 (1—(2r/%)*)In L. (2.34)
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Once again, this is not the result we would obtain from (2.6) with a delta-function in R,

which would be proportional to (y — 2x), although they agree to first order in (v — 27).

2.5 On hearing the shape of a drum

The above results have been known for some time for the case of the Gaussian model
defined in Sec.(1.4). For this model, the free energy is related to the logarithm of the

determinant of the Laplacian in the geometry under consideration:
F = (1/2)Indet(—V?). (2.35)

In a now classic paper, M. Kac [9] asked the question whether the shape of the
boundary is completely determined by the spectrum of the Laplacian. As a step in this
direction, he, and subsequently other authors [10], showed how the asymptotic distribution
of the eigenvalues A, is related to the shape of the boundary. Explicitly, one considers the
heat kernel

D(t) = Tre 1=V, (2.36)

The asymptotic behavior of the A\, as n — oo is related to the small ¢t behavior of D(t).
Formally,

2F =) In), = —%2/\;8 .

= % <F(3)_1 /Ooots—lD(t)dt>

* Dt
t

(2.37)

s=0

__[7 D,

where we have inserted an ultraviolet cutoff € ~ a?. The methods of Kac and others then

show that, for a smooth boundary and metric,

2

L L 1



The first two terms give the non-universal bulk and surface contributions. The last term
gives something which diverges like (y/6)1na, as a — 0. To be dimensionally correct, this
should really be

F~ —% In(L/a), (2.39)

in agreement with (2.29) with ¢ = 1. The analysis of this section may thus be viewed as

an independent derivation of this result.

3. Theories defined on a cylinder

3.1 Transfer matrix on the cylinder

Consider now a conformally invariant theory defined on an infinitely long cylinder, which
may be thought of as the strip —o0 < v < o0, 0 < v < £, with periodic boundary

conditions. This is related to the plane by the conformal mapping

wEu—l—ivzilnz. (3.1)

2

Applying the transformation law (1.19) for T, we find that

2 c

T(w)eylinder = <7>2 (ZQT(Z)plane — ﬂ> : (3.2)

together with a similar equation for T. As discussed in Sec. (1), the logarithm of the

transfer matrix acting along the cylinder in the u-direction is the integral of Tou

7 =(12) [ Tuulo)io
= (1/2r7) /Z(T(v) +T(v))dv (3.3)

27 —
= T(LO + LO) -

xe

@7
where we have introduced the Virasoro generators in the plane

1 — 1 _
Lo=— ¢ 2T(2)dz, Ly =—— ¢ z2T(z)dz. (3.4)

2m



Since the system defined on the cylinder also has translational invariance in the v-direction,

the momentum operator k commutes with H. In terms of the stress tensor,

i = (1/27) /Z Tyudo = (Lo — To). (3.5)
0
We reach the important conclusion that the eigenstates of H and k are in 1-1 corre-
spondence with those of Lo+ Lo and Lg — Lo respectively. Let us summarize some of the
results of BPZ concerning these eigenstates:

1) Eigenstates of (Lo, Lo) are in 1-1 correspondence with the scaling operators of the
theory, with the corresponding eigenvalues being the scaling dimensions (h, k).

2) The ground state of Lo + Lo corresponds to the identity operator 1, with scaling
dimensions (0, 0).

3) The eigenstates of Lo (and those of Ly) fall into highest weight representations of the
Virasoro algebra. The highest weight state in a given representation (that with the
lowest value of k) corresponds to a primary operator. The h-values of the other states
differ by integers from that of the highest weight state.

Thus, there is a 1-1 correspondence between the eigenstates of ﬁ, k and the scaling

operators of the theory. The corresponding eigenvalues are [11]

2w 27s

FE = EO + 7 and k= / 5 (36)

where = and s are the scaling dimension and the spin of the operator. The ground state

energy of H is [12]
e

—o

The above results give a powerful way of numerically (or analytically) calculating the

Eo = (3.7)

value of ¢ and of the scaling dimensions for a given model. This is because it is relatively
easy to find the low-lying eigenvalues of H for finite . In using these formulas, it is, how-
ever, necessary to realize that they were derived for a theory which is at a renormalization
group fixed point, and is therefore exactly conformally invariant. In practice, there will in
general exist correction to scaling terms in (3.6) and (3.7), due to irrelevant operators.
Let us now verify (3.7) for the Gaussian model of Sec.(1.4). The Hamiltonian H of

this model, is, before any regularization, that which we would derive classically

#=3 [ ler/on +o/20)(00) v (3.5)



where 7 and ¢ obey canonical commutation relations. This may be diagonalized in terms

of Fourier modes of ¢:
. 1
H = zk:wk(a,tak + 5), (3.9)

so that the ground state energy is just %Ek wg. The allowed values of k£ in this sum are
integer multiples of 27 /(.

Suppose that we regularize the theory by putting it on a lattice of unit spacing. Then
we have a lattice dispersion relation wy = (2 — 2cosk)'/?, and |k| < 7. The ground state

energy is then
£/2—1

E, = %M(O) + ) w(2mn/0) + %w(r). (3.10)

n=1
Notice that the & = 7 mode gets counted only once. Now apply the Euler-Maclaurin

summation formula

N-1 N
1 1 1
1O+ 3 1)+ 35N = [ foddn+ SN - PO+ @1
n=1 0
with N = (/2. (¢ is assumed even; the whole calculation can be repeated when it is

odd, to obtain the same final result.) The first term on the right hand side gives a bulk
contribution proportional to ¢ in Ey. It does not appear in (3.7) because we implicitly
subtracted it when we asserted that (T') = 0 in the plane. The term f’(N) vanishes due

to the symmetry of the dispersion relation, and we are left with

22l (3.12)

Fo =
0 ¢ 12

thus verifying (3.7) with ¢ = 1. Note that the final result did not depend in detail on the

dispersion relation, thus confirming the universality of this coefficient.

3.2 Lattice models on the cylinder

Now we are going to spend some time discussing some lattice statistical mechanics models
which can be more or less exactly solved. The aim will be to calculate the ground state
energy Fp on the cylinder and hence the value of ¢, using (3.7) [12,13,14]. The models

we shall consider are generalizations of the Ising model called the Q-state Potts models.



Imagine a square lattice with a variable s, on the site r, which can take ) possible values.

The action for this model is

S==8Y s, (3.13)

bonds

where the sum is over nearest neighbor pairs on the square lattice. This model has a

(@ — 1)-dimensional order parameter M = (M, ... Mg) with ) M, = 0, where
M, = (6,,,— Q). (3.14)

There is a phase transition at some ., such that M # 0 for 3 > (.. The partition function

can be written as

Z=Tr [] {14 (" -1)d,,..}. (3.15)
bonds

If we imagine expanding this in powers of (e® — 1), each term may be associated with
a configuration of bonds on the lattice, where a bond is present (absent) depending on
whether we choose the term (e’ — 1) (or 1). The bonds will form clusters, within which
all the spins are in the same state, and after we perform the trace we get a factor ) for

each cluster (including isolated sites). Thus

Z=>Y (=1 QNe, (3.16)
graphs
where N and N¢ are the numbers of bonds and clusters respectively.

To the original square lattice we now associate another one whose vertices lie at the
centers of the bonds of the original lattice. Each configuration of bonds may be associated
uniquely with with a set of closed loops on the new lattice, as illustrated in Fig. 3.1.

If Ng is the total number of sites of the original lattice, then the number of closed

circuits in clusters is Ng + No — Ng. Thus the number of loops is
NPZ(NB—I—Nc—NS)—I—Nc, (317)

so that
z=Q%" Y [ —1Q? Yo oNele, (3.18)

graphs
The critical point is known from duality arguments to be at the point where the expression
in square brackets in (3.18) equals unity. Therefore, at criticality, the Potts model is

equivalent to a gas of loops with a fugacity Q'/? for each loop.



Figure 3.1 Loop configuration on the surrounding lat-
tice corresponding to a given configuration of
bonds on the original lattice.

We can give each loop an orientation and sum over all possible orientations if we
compensate correctly for the double counting. At each vertex, a loop either turns left or
right if we follow the arrows. For a clockwise (anticlockwise) loop, the number of right
turns minus the number of left turns will be 4(—4). Thus, if we associate a factor e’ (e™™)
with each right (left) turn, each loop will carry a total factor of 2 cos 4u when we sum over
both orientations. Thus we can account for the fugacity factor Q'/? by incorporating the
above factors et with

Q'/? = 2 cos 4u. (3.19)

The resulting model may be written as a 6-vertex model [15]. This is a special case
of the 8-vertex model, whose configurations are given by placing an arrow on each bond of
a square lattice. The possible configurations at a vertex, together with one conventional

notation for their Boltzmann weights, are shown in Fig. 3.2.



Figure 3.2 Vertex configurations and their weights in the
8-vertex model.

A special case of the 8-vertex model is the 6-vertex model, which has d = 0. The
further specialization a = b gives the F-model. The Potts model then corresponds to the
case a = b =1, ¢ = 2cos 2u of the F-model. The vertex models may be solved by Bethe
ansatz, and the value of ¢ thus extracted exactly [16], but we shall proceed by a more
heuristic argument [12,13,14]. The F-model may be rewritten as a solid-on-solid (SOS)
model in the following way. Assign an integer-valued height variable ng to each site R
of the dual lattice. The difference ng — nr/ on neighbouring sites is 1(—1) depending
on whether the the arrow on the bond we cross in going from R to R’ is going to the
left (right). When d = 0, such a unique correspondence is always possible. We then see
that the different weights in the F-model depend on whether |ng — ng/| is 0 or 2 for a
next-nearest neighbor pair in the SOS model.

At large distances, we might expect that the fact that the ng are restricted to discrete
values should not be relevant, and that the resulting model should be in the universality
class of the Gaussian model of Sec. (1.4). Such an argument may be backed up with explicit
renormalization group calculations. Since we are free to rescale the field ¢ in (1.21) (thus
redefining ¢), we choose it so that ¢(R) = (7/2)ng. The only problem is that we do not

then know the value of g to which the the 6-vertex model renormalizes.



To get around this, we need to use one piece of information from the exact solution.
Baxter [15] tells us that if we turn on a small amount of non-zero d, the free energy has a
singularity |d|?/¥sv | where

ysy = (4/7) cos™'(c/2a). (3.20)

Now configurations with weight d, at which the number of arrows is not conserved, corre-
spond in the SOS picture to points around which the field ng has a discontinuity of +4,
that is ¢ has a discontinuity of +27. In the Gaussian model, this is a vortez. In order to
incorporate vortices into the model we must imagine that ¢ is an angle parametrizing the
points of a circle, so that it is only defined mod(27). A single vortex corresponds to the
field configuration ¢ ~ 6, which, in a system of size L, has energy

9 [ d—z’“ ~(g/2)InL. (3.21)

ar J, T

From this we read off that the scaling dimension of the vortex operator is
2 —ygv = g/2. (3.22)

This is the missing piece of information we need. Now we can use simple properties of the
Gaussian model to calculate quantities in the vertex models, and hence the Potts model.

The relation between () and the renormalized coupling constant is

Q =2+2cos(rg/2), (2<g<4)

(3.23)
u=(n/8)(2 - g/2).

However, there is an important caveat. The Gaussian model, and hence the vertex
models, all have ¢ = 1. This is not true for the Potts model in general. To understand
this, we must re-examine the above mapping in the case when the model is defined on a
cylinder. For convenience, we suppose that the original square lattice on which the Potts
model is defined is oriented at 45° to the axis of the cylinder, so that the arrows of the
vertex model point along either the u or v axes.

The problem is that on the cylinder, loops can wrap all the way around the cylinder.
We would like to give them a weight @'/, but the difference between the number of right
and left turns of such a loop is zero, so that in fact they are counted with a weight 2.
This may be overcome by inserting a ‘seam’ of bonds into the vertex model. For bonds

. —4diu

4iv or e , depending on the direction

which cross the line v = vg, we insert a factor e



of the arrow. Loops which go once around the cylinder will then pick up a factor 2 cos4u
as required, once we sum over both orientations. In terms of the SOS model, this is
the same as putting in a factor e***("E="r") for each bond of the dual lattice which lies
along the seam. These combine to give an overall factor of e(314/m(#(00,v0)=6(=00,v0)) when
renormalized onto the Gaussian model.

Thus the overall effect is that of inserting operators e(87#/m¢ at either end of the

cylinder in the Gaussian model. In the plane, the 2-point function of these operators

behaves like

(IS 9009 — exy (= 80/ (8(2,7) — SO0 ) ~ 2720
(3.24)
where h = h = (8u/7)? /4g, using (1.22). According to (3.6) and (3.7), the lowest eigenstate

of H which contributes when this operator is inserted at the ends of the cylinder has energy

© 27 (8u/w)?
“TTT 3 (329

from which we see that the actual value of ¢ for the Potts model is

(2 —g/2)?
g

c=1-6 , (3.26)
with ¢ given by (3.23).

For integer values of () we expect the theory to be unitary. We find ¢ = 1, %, %, 0 for
Q = 4,3,2,1 respectively. For () > 4, the model has a first order phase transition and the
above mappings fail. Note that for ) = 1 there are no degrees of freedom in the theory,
and ¢ = 0 as expected.

The above arguments represent only the simplest case of a very general relation be-
tween generalized Gaussian models with seams and vertex models. In this way, vertex
models corresponding to all the values of ¢ in the GKO construction have recently been
constructed [17] (see the talks of Zuber.)

Once we know the mapping of the Potts models onto the Gaussian model, we know in
principle all the critical exponents, and may even start to construct correlation functions.
The problem is that the Gaussian model has an infinite number of scaling operators e'®?,
and we do not know which ones will actually appear in the Potts model. The techniques
of conformal field theory, together with the requirement of modular invariance, to which

we shall turn in Sec. (4), give us this information.



3.3 Other boundary conditions

Suppose that instead of a cylinder we have a strip, of width ¢, with boundaries. The
boundary conditions are assumed to be of the conformally invariant type discussed in
Sec. (2), and we also assume the same boundary condition on v = 0 and v = ¢. This
geometry is related to that of the upper half plane by the conformal mapping
, l
w=u-+iv=—Inz. (3.27)

7
Following through the same steps as in Sec.(3.1), the logarithm of the transfer matrix

acting along the strip is
s ige

where
1 1 o 1 —
Lo= — 2T(z)dz — — zT(z2)dz = — ¢ 2T(2z)dz = Lo.  (3.29)

2m semicircle 2w semicircle 2m

In the last two equalities, we have used the fact that T is the analytic continuation of T
into the lower half plane.

Eq. (3.28) shows that the ground state energy differs by a factor of 4 from that in
the periodic case. This is easy to understand in the Gaussian model. If we consider a
cylinder of width 2¢, with periodic boundary conditions, half the modes may be taken to
have nodes at v = 0 and v = ¢, and will therefore be modes satisfying Dirichlet boundary
conditions for a strip of width ¢. Thus the ground state energy of this strip is from (3.7)

1 =

Fo=—-—r
7 T 26(20)

(3.30)

confirming (3.28) with ¢ = 1.

What are the eigenvalues of Ly for a semi-infinite geometry? If we look at Fig.2.1
and imagine a scaling operator ¢(0) at the origin (which is on the boundary), then if
#(0) = b~":¢(0) under a scale transformation, zs will be an eigenvalue of Lg, in just the
same way that in the bulk, the scaling dimension z is an eigenvalue of Lo 4+ Ly. The
quantity z, is called the surface scaling dimension of ¢. In general this is not equal to its
bulk scaling dimension. For example, in the Gaussian model of Sec. (1.4), the bulk 2-point
function of e®? is

<eie¢>(z1,El)e—ie¢>(22,22)> = exp (_%«95(21’21) _ 95(22,22))2})

= exp (eZ(G(Zl — 29,71 — Z3) — G(0,0))) ~ |z — 29 -2

(3.31)



with = e?/2¢g. In the upper half plane, the Green’s function (1.22) is replaced by
G(Zl,él |22,§2) ~ —(1/29)(11’1(21 — 22) + 11’1(21 — 22) + 1Il(21 — 22) + ln(él — 22)), (332)

where we have taken Neumann boundary conditions 9y¢ = 0. If we take z; and z; to
lie on the boundary, we then see that the 2-point function falls off as |z; — 29| 2%+, with
xs = 2x. The same result is valid for Dirichlet boundary conditions, but one must then
take the points slightly off the real axis. It should be emphasised that for a more general
model, z, is not simply twice the bulk scaling dimension.

To summarize, for the case of a strip with boundaries the eigenvalues of H are

TX,

g Y

E=Ey+ (3.33)

where the surface scaling dimensions x4 are eigenvalues of L.

4. Modular invariance on the torus

4.1 Theories defined on a torus

A torus may be thought of as a parallelogram whose opposite edges are identified. For
convenience we shall consider a parallelogram whose vertices lie at (0,27, 277, 27(1 4 7)).
The complex number 7, with Im7 > 0, describes the shape of the torus, and is called
the modular parameter. We normalize the free energy so that at criticality the bulk
contribution is zero. There are no boundaries, and the Euler number of the torus is zero,
so that, from Sec. (2), if we normalize the bulk critical free energy to vanish, the leading
term in the free energy will be independent of the size, and depend only on the shape
parameter 7. Thus we consider the partition function Z(r, 7).

The shape of the torus does not uniquely determine 7 (Fig.4.1). Because of the

periodic boundary conditions, Z(7,7) is invariant under
T:7— 71+ 1. (4.1)

If we look at the torus from the side, rather than from underneath, this also cannot change

Z. This is equivalent to invariance under

S:r——1/r. (4.2)



Figure 4.1 The torus, and different ways of looking at it
corresponding to the elements S and T of the
modular group.

The tranformations S and T, composed in all possible orders, generate the modular

group SL(2,Z) of tranformations of the form

at + b
et +d

T — (a,byc,d € Z, ad — bc =1). (4.3)

The generators satisfy the defining relations
S? =1, (ST)® = 1. (4.4)

It is sometimes useful, when the theory in question has some internal symmetry, to

consider a generalization with twisted boundary conditions around one or both directions



on the torus. In that case, Z is usually invariant under only a subgroup of the modular
group.

The modular invariance of Z seems at first sight trivial. It only becomes useful when
we realize that Z may be calculated in terms of the eigenvalues of I;T, k of the theory
defined on a cylinder. As we showed in the previous section, these are simply related to
the scaling dimensions of the scaling operators in the plane. We thus get useful constraints
on the latter by imposing modular invariance on the torus.

The torus may be constructed from a finite cylinder of length 27Im7 by joining the
ends, after performing a twist around the axis by 2rRer. The operators H and k act as
infinitesimal translation operators along and around the axis of the cylinder, respectively.
Thus

Z(7,7) = Tre—2n(Im) H+2mi(Ren)k (4.5)

Using (3.3) and (3.5), this may be written

Z(T,’T’) — efrcImr/G e27riTL0—27rii'fo

_ (4.6)
— q—c/24 q—c/24 TquoqLo’

where we have introduced the notation ¢ = e2™7. Henceforth we shall write Z(q,q) as a

function of ¢ and q.

4.2 The Gaussian model

Let us compute Z(q,q) for the Gaussian model of Sec.(1.4). We take the field ¢ to be
uncompactified, that is —oo < ¢ < co. As discussed in (3.1), we can diagonalize H and k
in terms of the eigenstates .

T o 10, (4.7)

k=—o0

where (since we take ¢ = 27) the k are integers. The energy and momentum of this state
are —<5 + > |k|ng and Y, kny respectively. (We have taken the continuum limit so that
wr = |k|, and have already used the ground state energy computed in Sec.(3.1).) The
contribution of the modes with k # 0 is

Ziiroy(q.0) = (q@) VT D g R gakI=kim

k#0 ng
_ (ch)_l/M (H qunk) ( 1__[ Zq—knk) (4.8)

=n(q)""'n(q) ™",



where we have introduced the Dedekind n-function

n(a)=q¢"* [T(1 -4 (4.9)
k=1
The treatment of the zero mode is more subtle. When the theory is regularized properly,

one finds a factor proportional to the inverse square root of the volume.

g'/?

(Tmr)!/2n(q)n(q)

Z(q,q) = (4.10)

It is by no means obvious that Z as given by this formula is invariant under S, although

it is true by construction. It follows from the property of the Dedekind function [18]

n(@) = (—i)'*n(q), (4.11)

where § = e=27/7

The infinite product in (4.9) has the important property that it is the inverse of the

generating function for the number P(n) of partitions of the integer n into positive integers.
r (1— = (1 24 ..9(1 2 44 ..9(1 3 64 ...
[[a-d"=0+g+@+ )0+ +q" + )1+ +"+--)..

=Y P(n)g

(4.12)

4.3 Decomposition into characters

Now return to (4.6). As discussed earlier, the eigenstates of (Lo, Lg) are organized into
highest weight representations of the direct sum of two Virasoro algebras. Thus we can

decompose the sum implied by the Tr operation into a sum over these representations:

Z(q,q) = Z Niuixn(@)x#(q)- (4.13)

We have labelled the highest weight representations by the eigenvalue h of Ly in the highest

weight state. The non-negative integers N, ; tell us how many times a given representation



enters, that is, how many primary scaling operators there are with scaling dimensions (h, k).

The g-dependence is all contained in the functions

o0
Xn(q) = ¢ /% Tey g™ = 7PN "y (n)q", (4.14)
n=0
where djp(n) is equal to the degeneracy of states in the representation at level n. The func-
tion x4(q) (where we have inserted a factor ¢~¢/?* for convenience) is called the character
of the representation. Its form depends only on ¢ and h.
The simplest case is when there are no null states in the representation. Given a

highest weight state |h), the general state at level n has the form
L™ L™ L" ... |h) (4.15)

for non-negative integers ny, with >, kng = n. If there are no null states, all these states
are linearly independent, and d,(n) = P(n). For a general representation, d,(n) < P(n),

so that for ¢ real,
Xa(q) < g /PN " P(n)gn = g7 (T y(g) T (4.16)

This result can be used to place an interesting bound on ¢. From (4.10) we see, in

this case, that as Im7 — 0+

xn(q) < ¢~/ (Imr)'/2, (4.17)
so that
Z(q,q) < §7V/"TImr Y Ny (4.18)
hoh

But modular invariance implies that Z must behave like ¢~¢/'2 in this limit. We therefore
see that if ¢ > 1, the number of primary operators is necessarily infinite. A word of
warning here. We have defined ‘primary’ with respect to the Virasoro algebra. If there is
a larger infinite-dimensional algebra present (e.g. supersymmetry, Kac-Moody, etc.) it is
conventional to redefine the meaning of ‘primary’ to be with respect to this larger algebra.
Then one can show that theories with a finite number of primary operators exist only for

¢ less than some critical value, which depends on the algebra.



4.4 Theories with ¢ < 1

Let us now consider only those theories with a finite number of operators which are primary
with respect to the Virasoro algebra, and which therefore have ¢ < 1. For the sake of
simplicity, we consider only unitary models, although several statistical mechanics models
(e.g. the Q-state Potts model for non-integer @) do not fall into this category. Then the
work of Friedan, Qiu and Shenker (FQS) [19] tells us that

1) The allowed values of ¢ are

6
c:l—m (m=3,4,...); (4.19)

2) The allowed values of h are given by the Kac formula

(r(m+1) — 3m)2 -1

h = hrs
dm(m + 1)

(1<s<r<m-—1); (4.20)

3) The representation with the above highest weight has a null state at level rs.
Using this information, let us try to construct the character y(¢), which may be
relabelled y,s(q). If there were no null states, it would be given by (4.16). Taking account
of the first null state and all the states which could descend from it, we then get

Xrs(@) = =T (g) T g (1= g7 4 ), (4.21)
Now the null state has weight
hys +1rs = hr,—s = hm—|—r,m—|—1—37 (422>

and therefore itself contains a null state in its family of descendents at level (m + r)(m +

1 — s). Thus, in writing (4.21) we were overcounting, and a more correct expression is

Yrs = q—(c—l)/24 77((])_1 <thS _ th’_S (1 _ q(m—}-r)(m—}-l—s) 4+ .. ))

— q—(c—l)/24 77((])_1 (qh,,S _ th,—s + qh2m+r73 . )

(4.23)

The general structure should now be fairly clear. The manner in which the null states
embed is only slightly more complicated than the naive picture given above, and the final
result is [20]

o0

er(q) e q_(c_l)/24 n(q)_l Z (qh2mk+r,s _ qthk-I-r,—s)‘ (424)

k=—o0



We need to consider the transformation properties of these characters under the mod-
ular group. Since the sums in (4.14) are over integer powers of ¢, the behavior under T is
straightforward:

T: xulg) = ™=y (q), (4.25)

The sums in (4.24) are similar to those appearing in the standard elliptic theta functions,
that is, they are sums over exponentials of quadratic forms in k. They share with the
theta functions remarkable properties under S : ¢ — ¢. After judicious application of the

Poisson sum formula, and use of (4.10), it may be shown that [21,22]

Xra(@) =D Si xwa (9), (4.26)

r s’

where
!

' 8 1/2 'y mrr! TSS
ST = —— ) (=) i sin : (4.27)
m(m + 1) m m+1

From (4.25) and (4.26) we see the remarkable fact that the x,s transform according
to a finite-dimensional representation of the modular group.

If we call this representation R,,, it follows that bilinears like the right hand side
of (4.13) transform according to R}, ® R,. The problem of finding modular invariant
combinations thus reduces to finding the identity component of this, in general reducible
representation. There is an additional requirement (at least for a unitary theory) that
the N,; be non-negative integers, and that the identity operator appear just once, that is
Ngo = 1. Since the elements of the matrix S are in general irrational numbers, this is a
very powerful constraint.

To check whether a given combination is modular invariant, we need check only its
invariance under S and 7. That under T follows immediately if we insist that N,; = 0
unless h — h is an integer. This amounts to requiring that only integer spin local operators
appear in the theory. This is necessary for correlation functions to be single-valued.

Since by its construction the matrix S satisfies S = 1, and its elements are real, the

combination with

is automatically invariant. This corresponds to a theory containing all the scalar primary
operators allowed by the Kac formula (4.20).
With a little more ingenuity [22], it is possible to construct other invariants. First, it

is helpful to consider r, s as running over the full rectangle (1 <r <m—1,1 <s <m), in



which each primary operator appears just twice. Consider, for example, the case when m
is odd. Then it is easy to show that

S5 = () s = (s (4.29)

rym+1—s-

This implies that the space spanned by

Xrs + Xrym+1—s (5 Odd) (430)

is an invariant subspace. Therefore if we form the diagonal combination restricted to this

subspace
2

, (4.31)

7252 %

r s odd

Xrs + Xrm+1—s

the result will be invariant under S. Moreover, one may check that ks —hy pmy1—s is always
an integer if m = 1(mod 4), so the result is also invariant under 7', and by construction
the N,; are non-negative integers.

It turns out that it is possible to find a similar invariant for all m > 5. The
problem of finding all invariants with non-negative N,; is much more difficult. It has
been shown [23] that there are only a finite number of other possibilities, one each for
m =11,12,17,18,29,30. There is a remarkable correspondence between these two infinite
sequences, with a finite number of exceptional cases, and the A-D-E classification which
occurs in many apparently unrelated branches of mathematics, for example the classifi-
cation of the finite subgroups of SU(2), of simply-laced Lie algebras, and of the critical
points of smooth functions. As yet, there is no physical explanation of why this scheme
should enter into the classification of two-dimensional universality classes, although, as we
shall discuss briefly in Sec. (5), there are known lattice models for each modular invariant

combination.

5. Identification of operators in particular models

5.1 The fusion rules

The Kac formula (4.20) and the requirement of modular invariance furnish us with a

list of all primary operators in a given theory, for each allowed value of ¢ < 1. For



a particular statistical mechanics model with this value of ¢, we still need to know the
physical identification of the operators which modular invariance has told us must exist
in the scaling limit. In solving this problem, the fusion rules of BPZ turn out to be
very helpful. These take the form of selection rules on the operator product expansion

coefficients. In the operator product expansion

B3] - (6] = cijrlon] (5.1)

k
(where the square brackets [¢x] imply all the descendants of the primary operator ¢g),
the coeflicient ¢;j; is non-vanishing iff the 3-point function (¢;¢;¢r) is non-zero. If these
operators correspond to the values (ry,s1), (rz,sz2), (r3,s3) in the Kac formula, then a

necessary condition for the non-vanishing of ¢;;; is that
ri+ry+r3 =1 (mod 2), (5.2)
and that (ry — 1), (r2 — 1), (r3 — 1) satisfy the triangle inequalities
(ri—1)+(rs =1) > (rs — 1), ete. (5.3)

Similar conditions apply with r replaced by s.

A given statistical mechanics model will usually possess certain internal symmetries
which also impose selection rules on the operator product expansion coefficients. These
rules must then be consistent with those given by the fusion rules. For example, (5.2) is

consistent with the existence of a Z; symmetry under which

?brs — (_1)r_1¢rs- (54>

As we shall see, such a symmetry is nearly always present in a theory, and it corresponds

to Kramers-Wannier duality.

5.2 The Ising model

The lowest value of ¢ allowed in a unitary theory is ¢ = 1, corresponding to m = 3. From

29
(3.23) and (3.26), this value of ¢ is that of the @ = 2 Potts model, more commonly known
as the Ising model. There is only one modular invariant combination with this value of ¢,
the diagonal one

Z = |xo|” +

X0 X1/16|2 + X1/2|2- (5.5)



Apart from the identity operator 1, we have o, with dimensions (%, %), and e, with
11

dimensions (3, 5). The fusion rules give the following non-vanishing operator product

expansion structure:

[e] - [e] = 1], (5.6)
(o] - [e] = [o], 5.7
o] - [o] = [1] + [€]. (5:8)

The action of the nearest neighbor zero-field Ising model is

S=-p Z s(r)s(r'), (5.9)

bonds

where s(r) = +1. There is an obvious Zy symmetry allowed by (5.6-8)
o= —0, €—e€, (5.10)

which suggests that we identify o with the scaling limit of the local magnetization s(r),
and e as the scaling limit of the local energy density >, s(r)s(r’). These identifications
are of course borne out by the exact solution of the Ising model, which shows that the
scaling dimensions of the magnetization and energy density are n/2 = % and 2 — v~ 1 =1
respectively.

The symmetry under duality is more subtle. Writing the partition function as

Z=Tr [] (1+as(r)s(r)), (5.11)
bonds
and expanding in powers of = as for the Potts model in Sec. (3.2), the Z; symmetry means
that the diagrams consist of closed loops of bonds. Each diagram may be associated with
a spin configuration of another Ising model on the dual lattice, in which all the spins in
the interior of a loop are down, and the rest are up. Thus each bond present with a weight
x corresponds to a domain wall on the dual lattice, as shown in Fig.5.1.

If the coupling constant of the dual model is 5*, then
e 28" = = tanh 3. (5.12)

The duality symmetry implies that, apart from an unimportant constant, Z(8*) = Z(j3).
The critical point is at 3 = 3* = .. Near the critical point, if we define t = 3. — 3, the



Figure 5.1 A graph in the high-temperature expansion
and the corresponding dual spin configura-
tiomn.

duality transformation simply reverses the sign of ¢. Since t couples to the energy density
€, we see that € is odd under duality. This is consistent with the fusion rule (5.6), where a
term [¢] would be allowed on the right hand side by Z, spin symmetry.

If we insert a spin s(r) into the trace in (5.11), the resulting diagrams will have an
odd number of bonds ending at the site r. In order to perform the duality transformation,
we must therefore artificially insert a domain wall ending at r. This means that we reverse
the sign of 3* on the dual bonds which cross the domain wall. The insertion of such a line
of bonds corresponds [24] to the placement of a disorder operator p at the end of the line
(see Fig.5.2).

The disorder operator is the dual of the spin s. It is non-local with respect to s,
because s(r) will change sign if r is taken in a closed loop about a disorder operator, and
therefore it does not appear in the operator content implied by (5.5).

It is interesting to explore other kinds of boundary conditions on the torus consis-
tent with the Z, symmetry. Suppose, for example that we impose antiperiodic boundary

conditions in the Im7 direction, so that we calculate

2

Zpa = |Xo x1/16l” + Ix1,21% (5.13)



Figure 5.2 Definition of the disorder operator. Bonds
crossing the wavy line have the sign of 3 re-
versed.

in an obvious notation. Using S we may now calculate Z 4p. The result is

Zap = Ix11s” + X3 2 X0 + XoX1/2- (5.14)

From this we can read off the operator content on a cylinder with antiperiodic boundary
conditions around the cylinder. This is conformally equivalent to the plane with a line of
bonds across which the sign of (3 is reversed, thus placing a disorder operator at the origin,
and one at infinity. Indeed, in (5.14) we see the dimensions (%, %) of u, which, by duality,
are the same as those of . The other operators are fermions t, v which are formed in
the operator product expansion of ¢ and . They are related to the fermions introduced

by Onsager in his original solution of the Ising model, and because they have h = 0 and

h = 0 respectively, they obey the massless Dirac equation
O:1p = 0, 9.4 = 0. (5.15)

Since the combination Zp4 + Z4p is, by construction, invariant under S, we see that

xo + X121 (5.16)



is invariant under the subgroup generated by S and T?. (5.16) corresponds to the free
fermion description of the Ising model, in which the only primary operators are 1, v, ¢
and e. The magnetization o is non-local in this picture, and does not appear.

Finally, let us consider the operator content in the case when the strip has bound-
aries [25]. First, suppose that the boundary conditions are free, that is, the spins on the
boundaries are unconstrained. Consider the partition function Zpp(7) of a rectangle of
dimensions (¢/2) x /Im7 (where 7 is pure imaginary), with periodic boundary conditions in
the v-direction, and with free boundary conditions on v = 0 and v = £/2. The contribution

of a particular operator of surface scaling dimension =4 to Zpp is

eﬂ’cImr/12 . e—27r1‘ﬂm7') (517)

using (3.28) and (3.33). If the number of primary operators with surface scaling dimension

h is Ny, then the complete partition function is

Zpp = ZNhXh(Q)a (5.18)

where x5 (q) is the usual Virasoro character, and ¢ = e?™7_ Note that in this case Z is
linear, rather than bilinear, in the characters. This expression may be transformed using S
into something linear in the x(¢). This may then be interpreted as an expression for Zpp,
in terms of the transfer matrix in the periodic sector, whose operator content is already

known to be given by (4.28).

Zer(@) = 3 (FIWPxa(d ) (5.19)

Note that in this case, the partition function is not a trace, because of the free boundaries
represented by the state |F') in the above. (In fact, (5.19) is not quite correct as written,
since |F') may couple differently to the higher states. This does not affect the argument.)
Moreover, for the states corresponding to the magnetization operator o with A = %, (F|h)
must vanish by symmetry.

If we now equate the leading terms in the two expressions (5.18) and (5.19) as ¢ — 0,

we obtain stringent constraints from the above vanishing, and the positivity of the other

terms, which completely determine the Np. The result is [25]

Zpp = Xo + X1/2- (5.20)



This means that there is only one primary operator in this sector, apart from the identity
operator 1. This must be odd under spin reversal, and we identify it with the surface
magnetization operator o, with surface scaling dimension x; = 1/2. This agrees with
an exact determination of this exponent for the Ising model [26]. Note that the energy
operator is no longer primary, but corresponds in fact to L_51.

The case of fixed boundary conditions is related to that of free boundary conditions
by duality. To see this, note that free conditions imply that the couplings 3 on bonds
perpendicular to the boundary vanish. After applying a duality transformation, then, the
bonds parallel to the boundary will have infinite 3. This will freeze all boundary spins into
the same state, either s = +1 or s = —1. Note, however that spins on opposite sides of

the strip do not have to be equal. Thus, in an obvious notation,
Zpp = Z++7P—I—Z+_7P. (5.21)

In fact, it is easy to show [25] that the only primary states in the (++) and (4+—) sectors
are those with h =0and h = % respectively. There is no distinction between magnetization
and energy operators in either of these sectors, since the Z; symmetry is broken.

The above calculations illustrate a general result: modifying the boundary conditions
changes the operator content. Although the scaling dimensions are still given by the Kac
formula, a given physical operator may appear at different positions in the conformal grid

(i.e. have different values of r and s), depending on the boundary conditions.

5.3 Lattice effects

It is important to realize that conformal invariance, together with modular invariance,
determines not only the relevant operators, with scaling dimensions x < 2, but also all the
irrelevant ones also. Although it is formulated in the continuum limit, it is therefore capable
of classifying correction to scaling terms which will occur when the model is formulated
on a lattice. The operators responsible for these will break rotational invariance down to
the point group of the lattice.

As an example, consider a model on a square lattice, with equal couplings in the z-
and y-directions. The rotational symmetry is broken down to D4. The lattice action will
differ from the fixed point action by quasi-primary (i.e. non-derivative) operators whose

spin is a multiple of 4. The most relevant such operator is

3 —2 3—
O, = (L%, — gL_4)1 + (L2, — gL_4)1, (5.22)



which has scaling dimension z = 4. The leading contribution to the 2-point function of a
scalar operator ¢ with scaling dimensions (h, h) is then proportional to

A cos48

rdh 2 )

/<¢(Z, 2)$(0,0)04(21,21))d*z1 = (5.23)

where z = re'?. The fact that the leading lattice corrections on a square lattice are O(r=?)
down on the leading term is a direct consequence of conformal invariance. This result is
confirmed in detailed calculations for the spin-spin correlation function of the Ising model
[27]. The way in which the amplitude A depends on h may also be determined. This
simple exercise in BPZ technology is left for the student.

5.4 Landau-Ginzburg classification

The Ising model in d dimensions is usually described in field-theoretic terms as a cut-off

®* Lagrangian field theory, with a Landau-Ginzburg-Wilson (LGW) action

S = % / (V®)? + m?®* + \&*) d. (5.24)

This is particularly appropriate at, and just below d = 4, when the ¢ = 4 — d expansion
may be performed. For d = 2, this, naturally, does not give accurate numerical results.
However, we would expect some of the qualitative features to persist. For example, just
below four dimensions, there are two relevant operators at the fixed point, identified with
® and 2, which are respectively Zs odd and even (®? is redundant, i.e. it can be removed
by a redefinition of ®). This is what we find at d = 2. The number of relevant operators
must remain invariant as we move down from d = 4 to d = 2, since an irrelevant operator
becoming relevant, or vice versa, would modify the stability of the fixed point. However,
the case of irrelevant operators is different. In the LGW theory there are an infinite
number, corresponding to all powers of ® mixed with arbitrary numbers of derivatives. At
d = 4 their scaling dimensions differ by integers, but in 4 — ¢ dimensions the spectrum of
scaling dimensions becomes very complicated. What is almost miraculous is that in d =2
they again become neatly organized into primary operators and their descendants. In the
Ising model, in fact, since both primary operators are relevant, all the correction to scaling
terms which can appear due to irrelevant operators must be analytic. Of course, all of
this is just a consequence of the existence of an infinite-dimensional conformal symmetry

in two dimensions.



The other diagonal modular invariant combinations with ¢ < 1 turn out to correspond
to the universality classes of multicritical Ising models. These have only scalar operators,

and correspond to LGW models

2(m—1)

S = / (027 + 3 An#n)dt. (5.25)

at the multicritical point where A\y = Ay = ... = Ay;y—3 = 0. As in the case m = 3, the
relevant operators (®,®2, ..., ®>™~*) and the leading irrelevant operator ®2™~% may be
placed in 1-1 correpsondence, in order of increasing scaling dimension, with the known

scaling operators at d = 2. The case m = 6 is illustrated in the table below.
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Note that the Z; symmetry & — —® is consistent with the fusion rules.

Lattice models corresponding to the above theories were constructed independently
by Andrews, Baxter and Forrester (ABF) [28], by modifying the SOS model equivalent to
the 8-vertex model in such a way as to maintain the solvability. In these RSOS models, the
integer-valued varables ng are restricted to the values 1 < np < m, and the Z; symmetry
corresponds to ng — m + 1 — ng. ABF solved these models using the corner transfer

matrix method to be described in Sec. (7).

5.5 The 3-state Potts model

The operator content of the non-diagonal modular invariant combinations is more interest-

ing. The simplest case occurs for m = 5, and we know from Sec. (3.2) that this corresponds



to the @ = 3 Potts model. The operator content in the notation (r,s;r’,s’) corresponding

to scaling dimensions (hys, hys) is

(11;11) (21;21) (31;31) (41;41) (5.26)
(21;31) (31;21) (11;41) (41;11) (5.27)
(33;33) x2 (43;43) x2 (5.28)

The group Zs has a 2-dimensional real representation, and so it is not surprising to see
doubling of the operators in (5.28). We identify (5.26) with energy-like operators (invariant
under the Zs symmetry), and (5.27) with magnetization operators. In the LGW scheme,

the simplest critical theory with a Z3 symmetry has a complex scalar field ® and action
S— / ((Ve) + \@* +a*"))dt. (5.29)

We may identify the leading relevant Zs-invariant operator (21;21) with ®*@®. In addition,
the leading irrelevant operator (31;31) corresponds to & +®**. The leading magnetization
operators (33;33) are ® and ®*. The equation of motion

—V2® + 310*? =0, (5.30)

together with its complex conjugate, implies that ®? and ®** are redundant, and therefore
should not appear. The other relevant magnetization operators (43;43) then must corre-
spond to ®*?® and ®*®%. They are marginal at the upper critical dimension d = 6, and
thus may become relevant for d < 6.

Finally, non-scalar primary operators are allowed in a theory with a complex scalar
field. The operators (31;21) and (41; 11), with spins 1 and 3, correspond to (®*90® — @9P*)
and (®*3® — ®I*®*) respectively.

The fusion rules are consistent with the Zs symmetry, which, unlike the Ising case,
allows [o] to appear in the operator product expansion [o] - [¢]. They are also consistent
with duality: similar arguments to those in the Ising model show that the 3-state Potts
model on a square lattice is self-dual. The energy operators with r even (odd) are then
respectively odd (even) under duality. It is possible to play the same games as we did in
the Ising model in considering the effect of different boundary conditions. The results are
even richer [25].

Unfortunately, it is more difficult to construct LGW models corresponding to the non-

diagonal combinations with higher values of m. The symmetry implied by the doubling of



operators does not appear to be manifest. However, Pasquier [29], by observing that the
state space of the ABF models could be regarded as the Dynkin diagram for the algebra
Ay, and that the Boltzmann weights were simply related to eigenvectors of the Cartan
matrix, was able to construct similar lattice models defined on the Dynkin diagrams of the

D,, and E,, series.

6. The continuum limit away from criticality

6.1 The stress tensor

In this section we are going to assume that we know all that is to be known about con-
formally invariant theories, which correspond to statistical mechanics models at a critical
point. What can we now say if the action is perturbed by some relevant operator? For

example,
S=58"— /\/qb(z,z)d2z, (6.1)

where S* is the fixed point action, ¢ is a scalar operator with scaling dimensions (h, h),
and A is a coupling constant, with dimensions (1 — h,1 — k). For this to be a relevant
perturbation, h < 1, because the renormalization group eigenvalue of X\ is y = 2 — 2h.
First, we have to understand clearly what is implied by the continuum notation in
(6.1). It means that we are working in a renormalized quantum field theory. Thus the
operator ¢ appearing in (6.1) is a renormalized operator, defined by the requirement that
its correlation functions are finite in the continuum limit, and A is a renormalized cou-
pling constant. In general, the relation between renormalized and bare operators (i.e. the
counterterms) will depend on the interaction, that is on A. However, when A is of positive
dimension, there are only a finite number of additional counterterms possible. In the case
when S* corresponds to a free field theory, this is equivalent to the statement that that the
theory with A\ # 0 is super-renormalizable. In that case, of course, no renormalization is
necessary in the A = 0 theory. In the more general case, we can say that the renormalized
operators in the A # 0 theory may be expressed as a linear combination of a finite number
of renormalized operators in the A = 0 theory. This will become clearer as we consider

some examples.



Suppose then we define ¢ in (6.1) to be renormalized at A\ = 0. If we now calculate

some connected correlation function of ¢ perturbatively in A we find

(b(2,2) ..y = ($(2,7) .. Vs + /\/<¢(z,z)<b(zl,zl) L Vged e (6.2)

As z — z; the integrand in the second term may be estimated using the operator product
expansion. The general term behaves like |z — 21|72t %i¢;, where ¢; is an operator which
enters the operator product expansion of ¢ with itself, and =z, z; are the scaling dimensions
of ¢ and ¢; respectively. This singularity will be integrable if 2z — z; < 2. In general,
there will only be a finite number of operators ¢; which violate this criterion. (If <1
there will be none.)

At order A", new non-integrable singularities will arise only if there exist operators
coupling to ¢™ with dimensions z; < & — n(2 — z). Since by assumption z < 2, at some
point this becomes impossible. Thus only a finite number of counterterms are required
to renormalize ¢ in the A # 0 theory. For convenience let us suppose that no such terms
arise, either because operators ¢; coupling to ¢™ do not exist, or simply because = < 1.

For the stress tensor, there is always at least one counterterm. Consider the zz

component 7. If we calculate a correlation function involving 7' in perturbation theory,

we find

(T(z,2)...)=(T(2)...)sx + A /<T(z)¢(21,21) c)Se A’z + - - - (6.3)
Since we have the operator product expansion
B h _ . _
T(z)¢(z1,21) = m@b(h,m) L Op(z1,21) + -
h 1-nh (6:4)
= m@b(%z) + Z_Zlaﬁb(zaz) +

we see that the integral in (6.3) is ultraviolet divergent, and should be regulated by, for
example, inserting a step function cut-off H((z — z1)(z — z1) — a?) into the integral. The
most singular term vanishes on angular integration, but, as a consequence of the cutoff,

0:T is no longer zero. In fact

0:T = )\/ M(Z —21)0.4(2,2)8(]z — 1 |* — a®)d?zy + - - (6.5)

(z —2z1)

Since the stress tensor must remain conserved

1
0:T + 0.0 = 0. (6.6)



Comparing with (6.5) we see that
O(z,z) = —4n A1 = Rh)p(z,2) + - -. (6.7)

With the assumptions we made earlier, there are no higher order terms. The coefficient
in (6.7) may be simply understood if we recall that @ is the response of the action to a
scale transformation z — b7'z. Under this transformation in (6.1), d*z — b~%d?z, and
¢ — b*" . For (b— 1) infinitesimal, we then obtain the first term in (6.7). This is valid all
the way along a renormalization group trajectory leaving the fixed point, until we reach
another infrared stable fixed point. At any point on the trajectory the IR behaviour is
determined by this second fixed point. However, precisely at the new fixed point, the
ultraviolet behavior changes also. This has the effect that new renormalization of ¢ is
required, and in fact ¢p ~ a~ "¢ for some positive k. Thus, in the renormalized theory ¢,

and therefore @ as given by (6.7), are zero, as expected at a fixed point.

6.2 Zamolodchikov’s c-theorem

Let us consider more carefully the global picture of a renormalization group flow from a UV
stable fixed point, with a relevant operator ¢, to a relatively IR stable fixed point. Both
fixed points correspond to conformally invariant theories. Can we say anything about one
fixed point given properties of the theory at the other? An important qualitative result in
this direction is given by the c-theorem [30], which states that there ezists a function C
of the coupling constants which is non-increasing along renormalization group trajectories,
which 18 stationary only at fixed points, and which, at a fized point, s equal to the value
of ¢ for the corresponding theory.

The proof is based on rotational invariance, positivity, and the conservation of the
stress tensor. Consider a theory at some particular point on the renormalization group
trajectory specified by a set of couplings {¢g}. For the time being, however, we suppress the
dependence on {g}. Recall that T, © and T are respectively the spin 2,0, —2 components

of the stress tensor. Thus their two-point functions must have the form

(0(2,2)T(0,0)) = (T(2,2)0(0,0)) = G(27)/2°z, (6.8)



On the other hand, conservation of the stress tensor says that
L,

Taking the correlation function of this equation with 7'(0,0) and with ©(0,0), and using

(6.8), we find two equations

1.

F+-(G-3G)=0
- ;o (6.10)
G—G—|—Z(H—2H):O,

where F' = 2zF'(2%), etc. Eliminating G from the above and defining ¢ = 2F — G — :H,
we see that

C=-7H (6.11)

Now, by reflection positivity (remember @ is a scalar), H > 0. Thus C' is a non-increasing
function of R = (22)'/2%, at fixed {g}. The function C(R,{g}), being a dimensionless

quantity independent of the ultraviolet cut-off, should satisfy a Callan-Symanzik equation

(R% + Z ﬁi({g})aii) C(R,{g}) =0, (6.12)

where

o= Tt (6.13)

is the rate of change of C along the renormalization group trajectory, at fixed R. The

above result then implies that if we define

C{g}) = C(1,{g}), (6.14)

this quantity satisfies the first part of Zamolodchikov’s theorem. Moreover, C' is stationary
iff H = 0 which implies @ = 0, i.e. that we are at a fixed point. Finally, at a fixed point,
G=H=0,and F = %c, so that indeed C' = ¢.

Zamolodchikov’s theorem has the interpretation that renormalization group flows go
‘downhill’. In particular, it rules out the existence of limit cycles and other bizarre behavior
in renormalization group flows, at least in unitary theories. Physically, one would expect
such a quantity to exist, because the renormalization group coarse-graining procedure

implies a loss of information about the degrees of freedom of the theory whose wavelength



is of the same order as the cut-off. Thus renormalization group flows are irreversible, and
there should exist some kind of entropy function which measures this loss of information.
Interestingly enough, this general argument should apply not only in two dimensions, but
an attempt at a naive generalization of the above derivation fails for d > 2, because there
are more invariant amplitudes in the correlation function.

Returning to (6.11), we can use it to express the total change in C from short to large

distances as

3

Ac = -3 /Ooo R*(O(R)O(0))d(R*) = —127)\*(1 — h)? / r2(d(r)p(0))d*r. (6.15)

This result is very interesting because it relates the change in the quantity ¢, a number
characterizing a conformally invariant theory, to an integral of a correlation function of
a physical observable measured away from the critical point. For example, ¢ may be the
energy density €, in which case A is the temperature difference t = 3. — 3. In the usual
case, the renormalization group flows will then end at a trivial high- or low-temperature
fixed point, with ¢ = 0. Thus (6.15) gives a formula for ¢ at the critical fixed point in

terms of the second moment of the energy-energy correlations.

6.3 The Ising model

Let us see how this works in the free-fermion description of the Ising model. As discussed
in Sec.(4), this may be formulated in terms of a pair of Majorana fermion fields (¢, )

satisfying the Dirac equation, so that the fixed point action is
= /(;@d) + o)) d*z. (6.16)

The energy density is € = itht) (note the 4, which is required to make (ee) positive), so that
moving away from the critical temperature corresponds to adding a mass term im [ ppd? 2

to S, where we use m instead of ¢t above. The propagators are

z(pz—l—pz) d2p —3

(Bz02)0(0,0)) = =im [ S T = ST Ko,

_Zpegl(pz+pz) d2p

1 (/)%
— 20, K —_ K ,
p?+m?  (2rm)? 0 27 fo(mR) " on t1(mR)

({2, 2)06(0,0)) = /

T, 0 ) = -m L Ky (),



so that the energy-energy correlations are

(e(R)e(0)) = —(T(R)$(R)B(0)(0))
— —[(BRYG(0))” + ((R)$(0)) (G (R)$(0)) (6.18)
[

Substituting this into (6.15), we find, after doing the integrals,
1 m\ 2 1 1
— 12 21——2(—)- (). S == 1
c mm*( 2) o m~" - (2m) 3= 5 (6.19)

thus confirming what we saw in Sec. (5.2).

6.4 Perturbative calculation of ¢

Quite commonly in renormalization group theory, if we vary some parameter like the
dimensionality d or the number of components of the order parameter, it may happen that
two fixed points collide at some critical value of the parameter. In that case, close to the
critical value, the two fixed points will be close together, and it is possible to construct
properties of the theory at one fixed point in terms of known properties of the other. The
standard example of this appears in the e-expansion, where the Gaussian and Wilson-
Fisher fixed points collide for d = 4, and one may calculate exponents, etc. at the latter
fixed point in terms of the trivial behavior at the Gaussian fixed point. When two fixed
points are close together, the renormalization group eigenvalue y along the flow connecting
the fixed points is small, giving the effective expansion parameter.

In such a case, there is a simple way of constructing the ‘one-loop’ renormalization
group equations, given the operator product expansion coefficents at the IR unstable fixed
point. Although this method is by no means new, it is not as well-known as it should be.
It gives, for example, the easiest and most direct way of calculating the critical exponents
in the e-expansion, to O(e). Suppose the action at the IR unstable fixed point is S*, and
this is perturbed to

S =5"— Z Ai /gbi(r)dQT, (6.20)

where the ¢; are scaling operators with scaling dimensions x; close to 2. For the purposes
of this lecture, we take d = 2; this is not necessary. The renormalization group equations

will be in terms of the dimensionless bare coupling constants g; = a>~%'\;. Suppose we



expand the free energy in powers of the {g;}. The general term in the expansion has the

form

gl 92 . H (zi— 2)’“/9%(7“%)@%(7“%)¢2(T%)>Hd2rz (6.21)

nl’ng

The microscopic length a appears in two places in the above expression: explicitly, as

powers of a% 2

, and implicitly, because the integrals are in general UV divergent, and
must be regularized with a cutoff, for example |r -, | > a. The integrals are also IR
divergent. This may be corrected by, for example, putting theory in a finite box. The
subsequent manipulations all involve the UV behavior, and are independent of such a
cut-off.

To carry out the renormalization group, we change a — (1 + dl)a, and see how
we must modify the {g;} in order to keep the form of the free energy intact. For an
infinitesimal transformation (dl < 1), the contributions from the different ways a appears

in (6.21) may simply be summed. The explicit dependence on a leads to a contribution

— (14 (2 — x;)dl)gi. Now consider the change in the expression

/d2r1d2r2 (e i(r)dy(re) .. ) H(Jr1 — re| — a) (6.22)

as a = (1+dl)a. Using the operator product expansion, this may be written, after angular

integration
— / d27"1 Z Cijk 2ra’dl CL_I]’"'<. .. ¢k(r1) .. > (6.23)
k
We see that the term of order g;"g; 29 g% ... renormalizes the term of order g?"_lg;j _lg,?"“+1 -

On getting all the combinatorial factors straight, we find that the change in g, consistently
to all orders in the expansion of the free energy, is —7c;;1g;9;. Putting this all together,

the lowest order renormalization group equations are

—Bi(9) = gr = yrgr + 7 Z cijkgig; + O(g°), (6.24)
i,]
where y; = 2 — z;, and g = dgir/dl = —PBr(g). The higher order terms may also be

calculated, with the knowledge of the four-point functions at the unstable fixed point, but
a more sophisticated cutoff is required. As with the e-expansion, on finds that the high
enough order terms in the expansion in the g; for fixed y; have infrared divergences. This

is cured in the same way, by considering a simultaneous expansion in both the g; and the

Yk



The interesting feature of (6.24) is that, to this order, the renormalization group

equations are gradient flows: 5
ik = —-0({g)). (6.25)
9k

where

{9} Zykgk + ch”kgzgjgk (6.26)

17k
This makes it easy to calculate the function C({g}) of Zamolodchikov’s theorem [30]. Since

it must have the same stationary points as 5({9}), to this order they must be proportional:

C({g}) = c+aC({g}) + Olg") (6.27)
The constant o may be fixed by calculating C' perturbatively, using (6.7) and (6.11).

4 d(T‘2)

C—C——27T Zykgk/ 742(273,”4)T_2_|_

=c—37"> wygi +0(g°),
k

(6.28)

from which we see that @ = —672.

These formulae allow us to calculate the value of ¢ at the new fixed point, per-
turbatively in the yi. Consider the simplest example with one relevant coupling ¢;.
For simplicity assume that ¢i1; = 0 for j # 1. Then there is a fixed point at
g1 = g8 = —(y1/mc111) + O(y?). Substituting this into the above equations, we find
that the value of ¢ at the new fixed point is

%2 %3
Y19 mC1119
— 672
c i ( 5 + 3 )—I—

(6.29)

e~ U o)

5111

This agrees with another (more complicated) calculation [31] which uses the finite-size

correction (3.7) to define c.

6.5 Application to models with ¢ < 1

Let us consider the sequence of models with ¢ < 1 corresponding to the diagonal modular

invariant, which in Sec. (5.3) we argued were in the universality class of multicritical Ising



models. The operator ¢; 3 with h = h = hy 3 is always present in these models, and it has

dimension (« ) )2
m-+1)—3m)* —1 4
— ~2 - = 4+ O(m2 6.30
1.3 2m(m + 1) m +0(m™) ( )

as m — oo. Suppose we turn on this operator. The fusion rules imply that the only
non-zero operator product expansion coefficients ¢qq; are those which couple ¢, 3 to other
operators in the column r = 1, which are all irrelevant, except for + = 1. Thus, we are in
the situation of the calculation at the end of the last section.

The coefficient ¢111 may be found by taking the limit m — oo in the results of Dotsenko
and Fateev [32], and one finds

4 -1

Thus the value of ¢ at the new fixed point is

c(m) — 5—2 (%) +0(m™)
=c(m) — 12/m® + O(m™*) (6.32)

=c(m — 1)+ O(m_4),

to the order at which we are working. Thus, under the perturbation ¢, 3, the renormaliza-
tion group flows cross over to the theory with the next lowest value of ¢. This is consistent
with the physical interpretation of these theories. In the Landau-Ginzburg picture (5.25),
the operator ¢, 3 corrsponds to ®2(m=1)=2 When this is turned on, the term ®2(m—1)
becomes irrelevant, and we would expect the theory to correspond to ¢(m — 1). At the
new fixed point, the perturbation is irrelevant. From our renormalization group equations,
we can see that its renormalization group eigenvalue is —y ~ —4/m. This is consistent
with the operator moving to the position (1,3) in the conformal grid, that of the leading
irrelevant operator.

Another interesting example concerns the case m = 5. As discussed in Sec. (5), this
corresponds to both the tetracritical Ising model and to the 3-state Potts model. The
operator ¢ 3, by the above argument, causes crossover in the tetracritical model to the
tricritical Ising model with ¢ = %. In the Potts model, this operator is the next-to-leading
magnetic operator. Since the value of the change in ¢ depends only on the correlation

functions (which are the same for both models), the Potts model must also cross over to a

s

7. But modular invariance tells us that there is only one such theory -

theory with ¢ =



the tricritical Ising model. This behaviour may be understood if we enlarge the parameter

space of the tricritical Ising model, which usually has action

S=-K Z s(r)s(r') + p Z s(r)?, (6.33)

bonds sites
where s(r) = 1,0, —1, to include a term K'Y _..__s(r)?s(r’)?. There is then a critical value
of K’ in terms of the other parameters for which this model has the Z3 symmetry of the
Potts model. The operator ¢; 3 then breaks this Z3 symmetry and gives a flow towards

the usual tricritical Ising model with K’ = 0.

6.6 Conserved currents away from criticality

In statistical mechanics or in quantum field theory, exact solvability is usually associated
with the existence of an infinite number of conserved currents. In complex co-ordinates, a

current (.J, ,Jz. ) is conserved if
82']2... + azJE... — 07 (634)

where we include the dots to indicate that .J may have rank greater than one. In con-
formal field theories, there are certainly an infinite number of such currents, for example
(2"*1T(z),0), whose line integrals give the Virasoro generators. Away from criticality, of
course, these will not all be conserved. Only T, itself, that is (T, i@) and (i@,T) are
conserved because of translational invariance, and €{r*T,, is conserved as a consequence
of rotational invariance.

However, there are many other conserved currents at criticality. An example is af-
forded by all the quasi-primary descendants of the identity operator 1, in the same confor-
mal tower as the stress tensor T' o< L_51. At level 3 we have L_31 ~ [L_y,L_5]1 ~ 0T,

so this is not quasi-primary. At level 4 there is the quasi-primary operator

3
T, = (L%, — gL_4)1, (6.35)
which is in fact proportional to : T? :, and so on. All of these operators depend only
on z, and therefore give conserved currents (74,0), etc. There are other examples, e.g.
the fermion t(z) in the Ising model, and the spin 3 current ¢4 ; with scaling dimensions
(3,0) in the 3-state Potts models. All these latter conserved currents are signals of higher

algebras in these models in addition to the Virasoro algebra.



Suppose that we now perturb the theory with a relevant operator as in (6.1). Do
any of these currents continue to be conserved away from criticality? Generalizing our
argument for the stress tensor to a generic current (.J,...), we calculate perturbatively in
A

(J(z,2) ...y =(J(2)...)s + /\/<J(Z)qb(zl,zl) Ve dPy A (6.36)

This integral should be regulated with a cutoff H(|z — 21| — a). When this is done, 95.J is
no longer zero. The term that survives in the limit @ — 0 is proportional to the coeflicient
of (z — z1)~! in the operator product expansion of .J with ¢:

1

Z— 21

J(2)p(21,21) = -+ + AW (2 z) 4 ... (6.37)

Note that the operator on the right hand side is referred to the point (z,z), so this is a
slightly modified version of the usual operator product expansion. If J has dimensions
(5,0) and ¢ has dimensions (h, h) as usual, then A(") has dimensions (h + S — 1,k). In
general, then, it will be a descendant of ¢ at level S — 1. It is a standard exercise in BPZ

technology to find the exact form of the operator. We then see that, to first order in A,
8= = NAWD 4 .. (6.38)

The operator A in the term of O(A™) will have scaling dimensions (S — n(1 — h),1 —
n(l1—nh)). Since h < 1, only a finite number of terms can exist. The question as to whether
there is a conserved current now comes down to whether all the operators on the right
hand side of (6.38) may be written as total derivatives with respect to z.

Let us consider some simple examples. First, the Ising model, with a thermal pertur-

bation A [ ed®. The conserved current at criticality is the fermion (z), with S = % The

operator A" has dimensions (0, %), and the only candidate for this is 1. Moreover, all
the A(n) with n > 1 would have a negative dimension, and therefore must vanish. In this
case, we see that the current is not in fact conserved away from criticality, but that the
fermions do satisfy the massive Dirac equation 9zt o \i), together with a similar equation
for ¢, which makes the model solvable.

Next [33], suppose that J = Ty, where T was defined above. In that case S = 4, and

A has dimensions (4 —n(1—h),1—n(1—h)). The only possibility for A(") has the form

AW = (oL’ + BL_ Ly +~vL_3) ¢, (6.39)



where the constants «, 3, are calculable. Now remember that L_y ~ 0,. In general,
because of the last term, (6.39) is not a total derivative with respect to z. However,

suppose that ¢ = ¢ 3, that is, there is a null state at level 3. This means that all the

correlation functions of the quasi-primary operator

2 1
Lw— > I L 3 ) d 4
( A R R UF S Ty —1>¢ (6.40)

vanish. Hence we may eliminate the last term in (6.39) in favor of the other two, and we
see that the result is indeed a total derivative. Thus a conserved current does exist, to
first order in A.

Now look at candidate operators for A(™. The right scaling dimension of A(™ is < 1.
Also, it must appear in the operator product expansion of (¢1 3)™. The only possibility is
for it to have right scaling dimension zero, which means that A has scaling dimensions
(3,0), and that it will appear at order n = (1 — h)~! = %(m + 1). Such a contribution
is therefore only possible if m is odd. In general, the only operator with such scaling
dimensions is L3 ;1 ~ 8. T, so this term is also a total derivative. An exception is the 3-
state Potts model (m = 5), where we saw that there is a primary operator with dimensions
(3,0).

What does the conservation of Ty ~:T?: mean? This is more easily understood in
Minkowski space. When A is turned on, the excitations corresponding to the operator ¢4 3
acting on the vacuum become massive. Although the theory will continue to possess criti-
cal, massless, excitations, because of the fusion rules these will not appear as intermediate
states in the correlation functions of the ¢ 3 fields. Thus the long-distance behavior of
this sector of the theory should be desecribed by a free, massive boson (z.e. (1.21) with
a mass term proportional to m?¢?). If we canonically quantize such a theory in terms of

oscillators

o(x) = / 277% {akeikr —|—a,te_ikl’} , (6.41)

where wy = vm?2 + k2, we find that, after normal ordering, [Tdz = Y (wi — k)a,tak.
Thus, the fact that 7' is conserved implies that in a scattering process, the sums of the
left-momenta kj = wy — k of the incoming particles is the same as that for the outgoing
ones. Similarly for the right-momenta kg = wi + k. This, of course, just corresponds

to energy-momentum conservation in the collision. If we now calculate [ :T7?: dz, we

find that it is proportional to k‘%aiak. Thus, the sum of the cubes of the left- and



right-momenta are also conserved. In an N-particle scattering process, this can be shown
to imply that the S-matrix decomposes into a sum of terms in each of which a pair of
particles scatters elastically while the other (N — 2) are spectators. This information is
usually sufficient to calculate the S-matrix exactly.

This result has an obvious, although so far unexplored, connection with the exactly
solved lattice models of ABF, discussed in Sec.(5.3). The operator ¢ 3 in that case is
precisely the one which takes the theory away from criticality tangent to the exact solution
manifold.

Zamolodchikov [33] has argued further that in the above case there is an infinity of
additional conserved currents corresponding to higher spin operators in the same conformal
tower as the stress tensor. In addition, he has showed how theories with higher spin
conserved primary currents (like the 3-state Potts model), may continue to possess these

when perturbed away from criticality in suitable ways.

7. The spectrum of the corner transfer matrix in solvable models

7.1 Introduction

The corner transfer matrix (CTM) method of Baxter [15] is a particularly powerful method
of obtaining exact information (in particular the one-point functions) in exactly solvable
models both at and away from the critical point. Recently the Kyoto group [34] have
identified and solved with this method a wide class of lattice models, one, in fact, for each
conformal field theory which can be obtained using the GKO construction based on the
AS) algebras. A remarkable result is that the logarithm of the corner transfer matrix (to
be defined below) is proportional to the Virasoro generator Lo, in that their spectra have
the same spacing and degeneracies. This is quite unexpected, as the Virasoro algebra is
supposed to be connected with the conformal symmetry, which operates only at the critical
point, in the continuum limit. As we shall see, it has the consequence that the formulae for
the one-point functions away from criticality are ratios of characters of a Virasoro algebra,
with the modular parameter ¢ representing, however, not the shape of a torus, but rather
being related to the temperature.

At present, this observation lacks any general theoretical explanation. Moreover, even

a descriptive account of the detailed results of the Kyoto group would take too long.



Therefore, in this lecture I intend to illustrate the correspondence in the very simplest
case, that of the Ising model. Further details of the subtleties of the CTM method are
discussed in Baxter’s book [15].

7.2 Commuting transfer matrices

For convenience, we shall consider two independent Ising models on interpenetrating lat-
tices rotated at 45° to the x and y axes. An essential part of the technique of the CTM is to
consider anisotropic models, with couplings K7 and K3 as shown in Fig.7.1. The doubled
Ising model is a special case of the interaction-round-a-face (IRF) model in which spins
(s1,82,83,54) (in this case Ising spins) are placed around the four corners of an elementary
square or plaquette, and the Boltzmann weight for the whole lattice is the product of the

weights w(sy, $2, $3, 54).

Figure 7.1 IRF model corresponding to the doubled Ising
model.

In this case

w(s1,82,83,84) = eff19188 oKosasa (7.1)

The doubled Ising model is in fact equivalent to the case ab = c¢d of the 8-vertex model
discussed briefly in Sec. (3.2).
Consider the row-to-row transfer matrix T(Kl , K3) of this model. Baxter showed that

the transfer matrices T(Ky, Ky) and T(K}, K}) commute if

sinh 2K sinh 2K, = sinh 2K sinh 2K}, = k', say. (7.2)



2Ky *2FK> this is an algebraic curve of genus one.

In terms of the Boltzmann weights e
It may be parametrized by elliptic functions: if we define snhu = —i sniu, where sn is the

usual Jacobi elliptic function of modulus &, then

e 2K — snhu/snh )\,

(7.3)
e 282 — snh(\ — u)/snh .

Provided that ksnh® A\ = 1, one may show, using addition theorems for elliptic functions,
that this parametrization satisfies (7.2). Moreover, and most important, the Boltzmann
weights are meromorphic functions of u. In this parametrization, & — 1 measures the
distance from criticality, and u measures the degree of anisotropy. The fact that transfer
matrices with two different values of u, but the same k, commute, is a consequence of the

star-triangle relation. This is illustrated in Fig. 7.2.

Figure 7.2 Star-triangle relation. The weights in the 3
squares have different values of wu, but the
same k. Only the central spin is summed over.
The relation is valid if v’ = u + u'.

Using this, we can consider three rows of the lattice corresponding to the product of
transfer matrices T(u’)T(u), and move the square with u”" = v’ —u from right to left across
the lattice. This will have the effect of interchanging v and u" at every position (Fig. 7.3).

All the models which have been solved using this method have the star-triangle prop-
erty. The commutation of the transfer matrices means that their eigenvectors (but not of

course their eigenvalues) are independent of u. This property may be generalised to the



Figure 7.3 Using the star-triangle relation to show that
two transfer matrices commute.
case where the us depend on the z-coordinate. A similar argument shows that the transfer
matrices T(u(:ﬁ)) and T(u(;z;) + u”") commute. Thus the eigenvectors depend only on the

differences u(zy) — u(xz).

7.3 Corner transfer matrix

The corner transfer matrix A is defined as the partition function of the upper right quad-
rant, when we fix the spins on the positive z-axis to particular values {s} = (so,s1,...),
and on the upper y-axis to the values {s'} = (s{,s],...). The rows and columns of A are
labelled by {s} and {s'} respectively. See Fig.7.4. Note that sg = s, that is the spin at
the origin is conserved under the action of A.

In general A will depend on u. It will also depend on the boundary condition chosen

at infinity. We choose to fix the spins at infinity in one of the ground states.



Figure 7.4 Definition of the corner transfer matrix.

We may also consider the CTM which rotates from the positve y-axis to the negative
z-axis. This will be the same as A with the replacement K; < Ky, which is equivalent
to u — A — u. Now consider the partition function for the region y > 0, in which all
the elementary squares in the upper right quadrant have an anisotropy parameter u, and
all those in the upper left quadrant have anisotropy parameter A — v. The spins on both

halves of the z-axis are fixed to specified values ({s},{s'}), as shown in Fig. 7.5.

Figure 7.5 Inhomogeneous lattice used to show addition
formula for the CTM.



In terms of CTMs, this partition function is

(A(U)A(v)) . (7.4)

8,8’

On the other hand, we could calculate this using the row-to-row transfer matrix T(u, A—v).
Since the lattice extends infinitely far in the y-direction, only the ground state |0) of
(—1In T) will contribute. The result will be

(s,5'|0). (7.5)

Howvever, by the star-triangle argument above, the state |0) will depend only on the
difference u — (A —v). We see, therefore, that A(U)A(U) depends only on the combination
u + v. It follows that A(u) depends exponentially on u:

A(u) — emufle (7.6)

In deriving this, we have been rather cavalier with normalizations and the thermodynamic
limit. Nevertheless, as argued by Baxter, (7.6) is true up to a c-number factor.

The above result is not surprising in the continuum limit, close to isotropy (u ~ %/\)
In the isotropic case, we may consider a more general CTM which rotates through an angle

6. Rotational invariance implies that it should have the form

5 !

|
A6, 5\) = e 0t (7.7)

where the usual CTM is A(?T/Q, u). Perturbing u away from its isotropic value %)\ may be
compensated, in the continuum limit, by rescaling = 4+ y and = — y appropriately, This has
the effect of modifying 6 from 7/2 to 7/2+ O(u — %/\) Thus, the exponential dependence
on 0 in (7.7) reflects the similar dependence on v in (7.6). However, it should be stressed

that (7.6) is valid independently of whether we take the continuum limit.

7.4 The eigenvalues of A(u)

We now use the fact that the elliptic function parametrization of the Boltzmann weights
implies that the eigenvalues of A are periodic functions of u. There are of course two
periods, real and imaginary. The real period has no physical meaning, merely adjusting

the overall normalization of the CTM. However, the imaginary periodicity under u —



u + 41K (k) (where K (k) is the complete elliptic integral of the first kind), implies, if we
look at (7.6) that

the eigenvalues of H, are /2K times integers. (7.8)

Now comes the real coup de main. Since the spectrum of (QK/W)I;TC is integrally spaced,
it should be robust under any limit of the parameter & we choose to take. In particular
consider the limit corresponding to the original Ising couplings Ky — oo, with K fixed.
This corresponds to k — 0 with u fixed. In that limit, e 251 ~ e=7/2K  The matrix A
is automatically diagonal, because the limit Ky — oo freezes all spins in the same left-
slanting diagonal to be equal (see Fig.7.6). The diagonals which intersect the z-axis at
x = j,7 + 2 interact with a strength (j + 1)K;.

Figure 7.6 CTM in the limit K3 — oo. Spins on same
solid line are in the same state.

Thus

A({s},{s}) = exp | —(nru/4K) Z (74+ 1)(1—sjsj42) | » (7.9)

where we have normalized A so that its largest diagonal element is unity. (7.9) displays
the advertised integer valued spectrum of (QIXF/W)IA{C. From (7.8), however, we conclude

that (7.9) is valid in the basis in which A is diagonal for all k < 1.



We see that the problem has been reduced to that of solving a rather simple one-
dimensional chain. This is a general feature of models solved using the CTM. In gen-
eral these lead to partition sums which satisfy many beautiful identities (e.g. the Rogers-
Ramanujan identities and generalizations thereof), and which in particular, are related to

character formulae. Let us see how this works in the simple case under consideration.

7.5 Character formulae

The partition function for the whole lattice (keeping in mind the fact that we fix the spin

at the origin sg and those at infinity to pre-assigned values) is given by

Z ="Tr fl(u)fl()\ - u)/i(u)/i(/\ —u),

= Tre_”‘Hc
’ (7.10)
_ Zq% Z;.;O(j+1)(1_3j5j+2)
{s}

—27A/KIn this expression, it is clear that the even and odd values of j

where ¢ = e
decouple, as they should. If we consider only the even sublattice, and let j = 2k, the sums
may be simplified by defining n; = %(1 — S2kS2k+2). This quantity is 1 or 0, depending on
whether there is (is not) a domain wall in between k and &k + 1.

Consider first the case when sg has the same value as the spins at infinity. Then there

must be an even number of domain walls. The partition function in this case is

o0 1yn JRR 1 1 1
Ziv= > qeolbrHm 5 [T+d*2)+ 5 [T —d"*2). (7.11)
k=0

Ek ng even k=0

In the same way Z_ is given by the difference of the above two terms.

The above expressions are simple linear combinations of the characters xo and x;
of the Virasoro algebra with ¢ = % (without the factors of ¢~ ¢/** included in the definition
(4.14).) For example, from (4.24) we find

(oo}
_ (24k+1)2—1 (24k+7)2—1 (24k+18)2—1 (24k+19)2—1
Xo(q) = x1/2(q) = [F(g)] ™" > (q ®  —q ®  4q ®  —q ) ;

k=—c0

(7.12)
where F(q) = ]2, (1 — ¢™). If we introduce j = k/4, the sum may be rewritten as

n=1
[e)

. (6j+1)2—1
Yo (-1)ig . (7.13)

pR—



Such sums may always be written as infinite products using the Jacobi triple product

identity [18]

Z ijjg _ H(l . QQn)(l +SCQ2n_1)(1 +Q?_1Q2n_1). (714)
j=—0o0 n=1

Taking Q = ¢*/* and z = —¢'/* we then find that

Xo = X1/2 = H(l _ qn)—l H(l _ q3n/2)(1 _ q(Sn—l)/Z)(l _ q(3n—2)/2)

n n

00 (7.15)
=J[a-q¢2).
n=1
Similarly, one may show that
Xo t Xi/2 = H(1‘|‘qn_%)- (7.16)
n=1
We thus arrive at the very simple results
Z4y = xo(q),

(7.17)

Z—t = X1/2(q)-

The appearance of the Virasoro characters implies that H, is proportional to the generator
Lg of some Virasoro algebra. The origin and physical meaning of this algebra are at present
unclear, although, in the case of the Ising model, an explicit representation of the other
generators has been given by Otiyama and Thacker [35].

Using the above results, we may compute the spontaneous magnetization at the central

site:
Ziy—Z4  fr(l-q"
S) = 0———— = — . 7.18
The critical behavior occurs as ¢ — 1—. We may extract the singular behavior in this

limit by using the properties of the characters under a modular tranformation, since, as
q — 1—, ¢ — 0. In this way, the character x;,15(¢) appears. This gives the familar Ising
model result (s) ~ (T, — T)l/g.

Although we have presented these results for the simplest of cases, it should be restated
that these general features seem to appear in all models which are solvable by the CTM

method [34]. The reason for this is left as an exercise for the ambitious student.
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