
Introduction to SymmetriesI.J.R.AitchisonMarch 27, 2001Lecture 6:The Group SU(3).By analogy with SU(2), SU(3) is the group of all 3� 3 unitary matrices Q with determinant +1 (we call them by thesame symbol!). As with SU(2) an in�nitesimal SU(3) matrix has the form,Qinfl = I+ i�where � is an in�nitesimal matrix. Imposing the requirement that Qinfl be unitary we haveQinflyQinfl = (I� i� y)(I + i� ) = I � i� y + i� + � y� = Iso to �rst order in � this means, � y = � :Again, as with SU(2), � must be traceless. This means that in�nitesimal SU(3) transformations are associated with3� 3 traceless Hermitian matrices. The condition that the matrices be Hermitian reduces the number of freeparameters in the matrix to eight:Qinfl = 0@ a11 a12 + ib12 a13 + ib13a12 � ib12 a22 a23 + ib23a13 � ib13 a23 � ib23 a33 1Awhere the a's and the b's are all real parameters. When we add in the additonal constraint that Qinfl be traceless thenumber of parameters is then reduced to eight (the same working gives three parameters in the case of SU(2)). As wehave eight free parameters we will therefore have eight generators.We start with the fundamental � 3 � representation (of dimension three, obviously) in which an element of SU(3) isrepresented by itself, and the generators are 3� 3 matrices. SU(3) matrices act on three- component complex vectors:q = 0@ q1q2q3 1A = q10@ 100 1A + q20@ 010 1A + q30@ 001 1A :[For SU(3) �avour symmetry we would have q1 = u; q2 = d; q3 = s while for colour symmetry we have q1 = r; q2 = g;q3 = b.] Let's denote a transformation of our q1; q2; q3 �coordinates� by:q! q0 = Qq where Q 2 SU(3):We slightly rewrite the in�nitesimal version as : Qinfl = I + ia:�=2where a now stands for the eight real in�nitesimal parameters, a = (a1; ::::a8), which are just the previous a's andb's reorganised, and � stands for eight Hermitian 3 � 3 matrices (the generators of SU(3)), � = (�1; ::::; �8), like1



� = (�1; �2; �3) :�1 = 0@ 0 1 01 0 00 0 0 1A �2 = 0@ 0 �i 0i 0 00 0 0 1A �3 = 0@ 1 0 00 �1 00 0 0 1A�4 = 0@ 0 0 10 0 01 0 0 1A �5 = 0@ 0 0 �i0 0 0i 0 0 1A �6 = 0@ 0 0 00 0 10 1 0 1A�7 = 0@ 0 0 00 0 �i0 i 0 1A �8 = 0B@ 1p3 0 00 1p3 00 0 �2p3 1CAThese are the Gell-Mann matrices. These eight Hermitian 3 � 3 matrices represent the generators of SU(3) in thefundamental representation.Note that the �rst three generators �1; �2; �3 are simply the Pauli spin matrices, i.e. the SU(2) generators in the2 representation, which are shown in bold type on this occasion, and they are augmented by a row and a columnof zeros. The three generators �1; �2; �3 obey the same commutation relations as the corresponding spin matrices,obviously, which is just the SU(2) algebra. This is known as the SU(2) sub-algebra of SU(3); SU(2) is a subgroup ofSU(3). Also note that �3 and �8 are diagonal: this means that we have two additively conserved quantum numbers(namely their eigenvalues), which in the case of �avour would be I3 and Y for instance. The number of additivelyconserved quantum numbers appropriate to a given symmetry group is called the �rank� of the group: SO(3) andSU(2) are both of rank one, while SU(3) is of rank two.A �nite SU(3) transformation matrix can be written as,e i2 � :�with eight �nite real parameters (� = (�1; �2; ::::::; �8)).We shall not take the time to calculate the algebra of SU(3) as we did for SU(2). We can easily �nd out what it isby evaluating the commutation relations among all the �'s. We �nd[�i=2; �j=2] = fijk�k=2where the fijk are known as the structure constants, and are tabulated in books. Generally there will also be biggermatrices representing the generators in other,larger, representations but they all obey the same algebra:[Gi; Gj] = fijkGk:So G(3)i = �i=2 where we are labelling the generators by the dimensionality of the representation (not quite what wedid for SU(2), but it will serve our purpose). Note that: trace (�i�j) = 2�ij; compare trace( �i�j ) = 2�ij .Other Irreducible Representations of SU(3)We have met two ways of �nding representations - which is basically what physicists want to know about, since particlestates correspond precisely to the contents of di�erent representations. One way (used for rotations and the Lorentzgroup) relied on �angular momentum know-how�, which was really the operator approach to angular momentum inquantum mechanics, starting from the angular momentum commutation relations - i.e. the algebra of the generators.We could do the same for SU(3), analysing the algebra of the 8 generators, and introducing generalisations of theangular momentum raising and lowering operators which take us from one state in a multiplet to any other. But thisis a more general approach than we need - after all, it seems that in practice we are interested in rather few types ofSU(3) representation. To learn about these few, it is more practical to follow the �tensor� method of Lecture 5, whichas we saw has the advantage that it produces explicit wavefunctions. So we shall �multiply low order representationstogether� to get higher represtations.The �rst thing we need to do is understand that there is another three- dimensional representation, the 3 �, whichphysically is the representation associated with the antiquarks. Note (before we start) that the 3 � cannot, physically,be equivalent to the 3 as the 2 � was to the 2 , since antiquarks have di�erent SU(3) quantum numbers from quarks(compare with SU(2): the antiproton and the antineutron are have the same SU(2) quantum numbers as the neutronand the proton, respectively). 2



The 3-dimensional (�self�, or �fundamental�) representation of SU(3) has a basis provided by the three �coordinates�qi transforming by q0i = Qijqj. Taking the complex conjugate of this expression we �ndq0�i = Q�ijq�j :Using the fact that Q is Hermitian we have, QyQ = I) Q�1 = Qy) �Q�1�ij = �Qy�ij = Q�ji) Q�ij = Q�1jiSo q0�i i.e. a component of a 3 �, transforms as, q0�i = q�jQ�1ji :Is the 3� representation equivalent to the 3 representation? Look at the in�nitesimal transformations:q0 = (1 + ia:�=2) qq0� = (1� ia:�� =2) q�:The question is, can we �nd a matrix S such that S��S�1 = �� ? If so, we easily deduce that Sq� (which is just alinear combination of the components of q� ) would transform in just the same way as q, and the two of them wouldnot be physically di�erent (and they'd be mathematically equivalent). The analogous equivalence does exist in SU(2)i.e. betwen the 2 and the 2 �. In that case, the job is done by choosing S = �2. Then, �2� ��2 = �� (check it!),and so 2 is equivalent to 2�. In the case of SU(3) though, it can't be done. A simple way to see this is to considerthe particular matrix �8, for which �8 = ��8. This means we need S�8S = ��8 i.e. �8 and ��8 would have to havethe same eigenvalues which is impossible with�8 = 0B@ 1p3 0 00 1p3 00 0 �2p3 1CA(and is possible with �3!). Hence the 3 � representation is not equivalent to 3 representation and we now have twodi�erent three-dimensional representations of SU(3) - the triplet and the antitriplet, or quarks and antiquarks if youlike.In �avour SU(3), �3=2 would be interpreted as I3 and the hypercharge Y = B + S would beY = �8p3 = 0@ 13 0 00 13 00 0 �23 1A. What about the complex conjugate representation? We had q0�i = e� i2 � :� �q� = e� i2�3�3� i2�8�8�::::::q: So in thiscomplex conjugate representation, the signs of the terms associated with the diagonal matrices �3 and �8 have beenreversed relative to the original representation. . So for q�; the �I3� is,0@ �12 0 00 12 00 0 0 1Aand �Y � is, 0@ �13 0 00 �13 00 0 23 1A ;which are the quantum numbers of the antiquarks. 3



OK, now we are ready to start the programme of building larger representations by multiplying smaller ones together(and remember the snag in this approach - the �reducible/irreducible� problem). Consider the object q�1q1+q�2q2+q�3q3 =q�i qi: The usual transformation with Q leaves this quantity invariant:q0�i q0i = q�jQ�1ji Qikqk = q�j �jkqk = q�j qj:This is a single (invariant) object, transforming according to the singlet representation 1 . In colour language we write� 1p3 �rr + bb + gg� for the normalised singlet wavefunction. The �+ for instance is 1p3( �drur + �dbub + �dgug):An alternative way of writing �q�1q1+ q�2q2+ q�3q3� is �qyq� , where we are thinking of the q as a column vector andthe qy as a row vector with entries the complex conjugates of those in q. We used this notation in SU(2). Less formally,it's often written as qq, which tallies with the complex conjugate representation being the one for antiparticles, butyou have to note that (at least at this stage) the �bar� is not the same as the one for Dirac wavefunctions which weintroduced at the end of Lecture 5. In this form it transforms to q0yq0 = (Qq)yQq = qyQyQq = qyq at once, as wesaw in the SU(2) case.So, we have learned how to make an SU(3) singlet 1 out of a 3� and a 3 . It is the direct analogue of the singletqyq in SU(2). What is the SU(3) analogue of the vector, or SU(2) triplet, coupling qy � q? We shall make a guess -that qy� q is something like an SU(3) �vector�. Consider an in�nitesimal transformation:q ! q0 = �1 + i2a:�� q) qy�jq ! q0y�jq0 = qy�1� i2a:���j �1 + i2a:�� q) qy�jq ! q0y�jq0 = qy�jq � i2aiqy�i�jq + i2aiqy�j�iq) qy�jq! q0y�jq0 = qy�jq � i2aiqy [�i; �j] q) qy�jq ! q0y�jq0 = qy�jq + aiqyfijk�kqor, Vj ! V 0j = Vj + aifijkVk:This should look familiar! Remember, for an in�nitesimal 3-vector rotation we had:xj ! x0j = xj + ai�ijkxkwhich is just the �su�x� way of writing r! r0 = r+ a � r:So the eight components Vi transform into linear combinations of each other and so form the basis of a representation.In fact they form an irreducible representation called 8 , the octet. Note that although we arrived at this �bigger�representation by �multiplying� (or coupling) two smaller ones together, once we have got this transformation law, ittells us how any octet of states transforms - it doesn't have to be literally seen as a 3 � 
 3 composite state.Under a �nite SU(3) transformation, the components of the �octet� V transform according to0BBBB@ V1:::V8 1CCCCA! 0BBBB@ V 01:::V 08 1CCCCA = ei� :G(8) 0BBBB@ V1:::V8 1CCCCA ;where the G(8)'s are the generators (eight Hermitian 8�8 matrices) of SU(3) in the 8-dimensional representation. Foran in�nitesimal transformation of an SU(3) octet,V 0j = (1 + ia:G(8))jkVk = Vj + iai(G(8)i )jkVk = Vj + aifijkVk;by the previous result. So we are saying that �G(8)i �jk = �fijk (this is exactly like �L(1)i �jk = �i�ijk!) i.e. wecan always �nd a representation by making use of the structure constants. This representation in which the matrix4



elements of the generators are essentially equal to the structure constants of the group is always possible for a Liegroup, and is called the regular or adjoint representation.In QCD the gluons are an 8 transforming in this way under SU(3)colour . They transform under SU(3) transfor-mations by the �f� coe�cients as above. And to reiterate the point made earlier: the fact that they transform as theoctet coupling of a 3 � and a 3 doesn't mean they actually are literally that kind of composite state. However, itdoes explain why people often talk about the gluons as being like �colour-anticolour� combinations (with the singletsubtracted out).Now that we have understood the transformation of the gluons, we can easily guess what is is SU(3)-invariantcoupling of gluons to quarks - we need this, of course, since the QCD interactions are precisely SU(3) (colour) -invariant. To make the required invariant coupling, we ned to couple the 8 of gluons, A , to an 8 made from thequarks - and the latter is of course just qy� q. It seems a good bet that the invariant coupling will be just the �dotproduct� of these: qy� iq:A i, and this is indeed the case.So we have learned that just as�spin� 12�� �spin � 12� = (spin� 1) + (spin� 0) in SO(3)or 2 
 2 ! 3 � 1in SU(2), in SU(3) we have 3 
 3� ! 8 � 1 :For �avour SU(3), this would be an SU(3) - octet of mesons, and an SU(3) - singlet meson. For SU(2) we saw that itwas nice to write V = qy � q as the entries in the the 2� 2 Hermitian matrix V:� which produced combinations withphysically meaningful quantum numbers. Here we want to consider V:� whereV1 = qy�1q = q�1q2 + q�2q1 = ud+ duV2 = qy�2q = iq�2q1 � iq�1q2 = idu� iudV3 = qy�3q = q�1q1 � q�2q2 = uu� ddetc. Then V:� is0@ V3 + 13V8 V1 � iV2 V4 � iV5V1 + iV2 etc 1A = 12 0@ q�1q1 � 13qy:q q�2q1 q�3q1q�1q2 q�2q2 � 13qyq q�3q2q�1q3 q�2q3 q�3q3 � 13qyq 1Aor 12 0@ uu� 13 �uu+ dd+ ss� du � �� su � K+ud � �+ dd� 13 �uu+ dd+ ss� sd �K0us � K� ds � �0 ss� 13 �uu+ dd+ ss� 1Aor qiq�j � 13 �qyq� �ij = Tijwhich is precisely a traceless second rank tensor! As such, we expect it to provide the basis of an irreducible represen-tation, and it does. Note that since the (*) represntation is inequivalent to the unstarred one, it makes no sense tosymmetrise/antisymmetrise with respect to labels of q�'s and q's (we don't expect to do that for quarks and antiquarks- only quarks among themselves, and antiquarks among themselves).Now consider � 3 � 3 � i.e. piqj. Lets start with the following antisymmetric combinations:�ijkpjqk;how do they transform? The components are (p2q3 � p3q2; p3q1 � p1q3; p1q2 � p2q1). In terms of �avours this is(ds � sd; su � us; ud� du). It is simple to check that these components have the same quantum numbers Q; Y; I3 as�u; d; s� : In fact we can show by brute force that (ds� sd; su� us; ud� du) does transform as 3 �.This leaves the symmetric combinations piqj + pjqi of which there are six, which cannot be reduced further. So3 
 3 = 6 � 3 �:5



What about 3 
 3 
 3 then? (These give baryons!) The answer is3 
 3 
 3 = 3 
 (6 � (3 �) = (3 
 6 )� (3 
 3 �) = 8 � 10 � 8 � 1and the bits on the RHS number 27 as they should. We sketch the proof.We begin by considering the combinations (�dabpaqb)sc, which are antisymmetric in p and q. The part in bracketstransforms as a 3 � as we already know. So the whole thing behaves as 3 � 
 3 . The trace is found by setting d = cand summing, and this has to be subtracted out to get an irreducible remainder. This trace is �cabpaqbsc, which hasno free indices and is therefore an SU(3) invariant, i.e. an SU(3) singlet, 1 .[ Note that it is in fact the determinant ������ pr pb pgqr qb qgsr sb sg ������for the colour case. This is the colour part of the wavefunction for three quarks in a baryon, and it is totallyantisymmetric in the quark labels, as is required by the Pauli principle in that case. ]The remaining traceless part of the 3 � 
 3 is�dabpaqbsc � 13�eabpaqbse�dcwhich is an 8 . Next, note that we can start with an independent combination of p and q by considering the symmetriccombination (paqb + pbqa), which has 6 di�erent components (note how these dimensionalities �gure in the �answer�given above). Multiplying this onto sc gives 18 components, but again this is not an irreducible basis. We can �reduce�it by antisymmetrising in q and s, giving �dbc(paqb + pbqa)sc which seems to have 9 components. But you can checkthat it is in fact traceless, so there's only 8 components there, and they form another 8 . This leaves 10 things fromthe 18, and these are totally symmetric and form the basis of the 10 . For example, in SU(3) �avour this would bep1q1s1 = uuu = �++p2q2s2 = ddd = ���p3q3s3 = sss = 
�p1q1s2 + p2q1s1 + p1q2s1 = uud+ udu+ duu = �+p1q1s3 + p3q1s1 + p1q3s1 = uus+ usu+ suu = �+etc......members of the 32+ decuplet.The general result to note from all of this is that we obtain irreducible representations by considering tracelesstensors of de�nite symmetry character. This procedure gives us, in fact, the actual SU(3)-space wavefunctions (am-plitudes). Remember that, as noted after the �avour octet, the symmetrisation/antisymmetrisation is done on thequark-type ( 3 ) indices separately from the antiquark-type ( 3 � ) indices.
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