
Introduction to SymmetriesI.J.R.AitchisonMarch 27, 2001Lecture 5:The Group SU(2): �Isospin� and �Internal Symmetry�.In this and the next Lecture (on SU(3)) we move away from �space-time� symmetries (translations, rotations, LT's)and consider �internal� symmetries. The basic approach, however, will be very similar to that in the �Symmetry andDegeneracy� section of Lecture 2, at least to begin with. The �rst di�erence will be that whereas in Lecture 2 wewere considering degeneracies such as the 2l + 1 - fold degeneracy of states with di�erent bLz eigenvalue for givenl, here we shall be typically considering mass degeneracies between particle states di�ering in their charge, or other�internal� quantum numbers. The second di�erence is that the transformations we shall be considering are not real-space rotations, or whatever, but rather unitary transformations in the space of the degenerate states. This is alwaysallowed in quantum mechanics, and of course the spatial rotations were, as we saw, unitary operations. Here, though,the thing is slightly more abstract.Consider, for example, the (near) degeneracy between the proton and the neutron masses, or between the up anddown quark masses. Let's pretend, in fact, that the up and down quarks are exactly degenerate in mass, and let'sassociate with them amplitudes (��avour wavefunctions�)  u and  d respectively. Then the u - d degeneracy meansthat we can equally well choose to describe the situation in terms of alternative amplitudes  0u and  0d where theprimed amplitudes are linear combinations of the unprimed ones, as given by some matrix Q:�  0u 0d � = Q�  u d �where Q is unitary so as to preserve the normalisation of the states. This is, of course, exactly the same kind oftransformation as we saw for the spinors � and � , and the 2-component object �  u d � is called an �isospinor�.The result at the end of Lecture 3 tells us the form of Q, in fact. We obtained it there by a bit of guesswork,and by analogy with the transformation law we had worked out explicitly for a vector. We shall begin our internalsymmetry discussion by deriving the form of Q another way, which will be useful in other cases.The general unitary 2 � 2 matrix transforming a two-component doublet, as above, will be denoted by U. SinceU is unitary, UyU = I:This implies det �UyU� = 1) (detU)� (detU) = 1) jdetUj = 1) detU = ei�:Such matrices belong to the group U(2) ( the group of unitary 2 � 2 matrices; recall the group axioms of Lecture 2). Suppose we transform  u and  d by  0u = ei� u and  0d = ei� d i.e an overall phase rede�nition . Then for thistransformation U = � ei� 00 ei� � and detU = e2i�:Such transformations, which change the  u and  d amplitudes by the same phase are physically irrelevant (in ourlittle u-d world), and we can eliminate them by requiring detU = 1 (i.e. � = 0 ). In this case U becomes a member of1



the group SU(2) (the S is for special i.e. detU = 1). Such matrices we denote by Q. Note that this is another groupof matrices.As we shall see (again) we can establish all of the physical consequences by considering in�nitesimal forms of thetransformation (as in the case of in�nitesimal rotations). An in�nitesimal SU(2) trasformation di�ers in�nitesimallyfrom doing nothing, which is the identity matrix; so we writeQinfl = I � i�where � is an in�nitesimal 2� 2 matrix i.e. its elements are all in�nitesimal. The condition QyQ = I then requires�I+ i� y� (I � i� ) = Iwhich implies � y = � to �rst order i.e. � is Hermitian (as was the case for the bJ's in angular momentum). Also,detQ = 1) ���� 1� i�11 �i�12�i�21 1� i�22 ���� = 1) �11 + �22 = 0i.e. the detQ = 1 constraint means � is traceless. So we can write � in terms of three real parameters a; b and c:� = � a b� icb+ ic �a �which we can write as � = � a32 a12 � ia22a12 + ia22 �a32 � = 12a:� :This is exactly as we found for the �space-time� spinors � and �. But in order to distinguish these �internal� trans-formations from the space-time ones, it is usual to use a di�erent notation for the � matrices; we call them the �matrices instead. So for internal rotations, Qinfl = I� i2a:� and Qfinite = e�i 12�n:� . There are three parameters inplay here, whether the transformation is in�nitesimal (the three a's), or �nite; in the latter case we have � and twoparameters specifying the unit vector n. And this way or writing Qfinite is in fact a way of writing the most generalSU(2) matrix Q.So however you look at it, whether as a real space-time doublet or in internal space doublet, the transformationlaw is the same and is basically just an SU(2) matrix. This is why the u-d doublet is called an isospinor (from nuclear�isospin� originally). We shall see even more analogies between SU(2) and rotations (i.e. SO(3)) in a minute. Anyway,under �nite SU(2) transformations, we have learned that�  u d �0 = e� i2�n:� �  u d � :Note that 12�3�  u0 � = 12 �  u0 � and 12�3� 0 d � = �12 � 0 d � :So �  u0 � is a state with third component of isospin equal to 12 , while � 0 d � has component - 12 . And of coursethe manitude of the isospin is I = 12 .So far we have only got as far as de�ning the group SU(2), writing the general element Q in a way that is afterall quite familiar from earlier work, and seeing how the associated two-component column vectors transform. Nowwe want to start doing for SU(2) the sorts of things we did for SO(3) and the Lorentz group i.e we want to �nd thealgebra and matrix representations of the algebra.To �nd the algebra of SU(2), we follow the exact analogue of the �UR (r) =  (R�1r)� kind of thing we did forSO(3). Let's rename the two amplitudes  u and  d as q = � q1q2 �. The quantities q1 and q2 can be regarded ascomplex �coordinates� in this two-dimensional complex vector space. An SU(2) transformation in this �space� is:q ! q0 = Qq2



where Q is an SU(2) matrix. We can construct functions of these coordinates,  (q1; q2), which we can think of asanalogous to our wavefunction  (r). Then for any such  (q1; q2) the corresponding transformed  will be (q)0 = bUQ (q)where for consistency between the primed and unprimed descriptions (q)0 =  (Q�1q)and this will give us the rule for how these  's transform. The right hand side is, for an in�nitesimal transformation: �Q�1q� =  ��1 + i2a:� � q�=  �� 1 + ia32 ia12 + a22ia12 � a22 1� ia32 �� q1q2 ��=  �q1 + ia3q12 + ia1q22 ; ia1q12 � a2q12 + q2 � ia3q22 �Expanding this as usual for a Taylor series of a function of two variables we have,UQ (q1; q2) =  (q1; q2) +ia3q12 : @ @q1 +ia1q22 : @ @q1 +ia2q22 : @ @q1�ia3q22 : @ @q2 +ia1q12 : @ @q2 �a2q12 : @ @q2. We write this in the traditional way for all in�nitesimal transformations:)UQ (q1; q2) = �I � ia: bX� (q1; q2)where this time bX1 = � q22 : @@q1 � q12 : @@q2bX2 = iq22 : @@q1 � iq12 : @@q2bX3 = � q12 : @@q1 + q22 : @@q2 :bX1; bX2 and bX3 are the generators of SU(2) just as bL = r� bp are for SO(3).Now, what about the algebra of these generators? It is an interesting exercise to work out the commutation relationsfor the generators bX as given above; one �nds h bX1; bX2i = i bX3just as for the generators of SO(3)! We say that SU(2) and SO(3) �have the same algebra� (i.e. their generatorsobey the same commutation relations). Clearly, then, the groups SO(3) and SU(2) are very closely related, if theirgenerators commute in exactly the same way. This implies, in fact, that the matrices representing their generators inany representation must be the same - since after all, a matrix representation of the generators is just a set of matriceswith the same commutation relations as the generators. So the whole business of representations of SU(2) boils down,more or less, to taking over the results already learned in SO(3). This is of course an even better reason to regardSU(2) transformations as some kind of �internal space rotations�.However, rather than just take the stu� over blindly from SO(3), we shall investigate a way of getting SU(2)representations which is slightly di�erent from the ways we used for SO(3), and which will be easily generalised toSU(3).Representations of SU(2)Remember that a �representation� of a group is a set of matrices that satisfy the same multiplication law as theelements of the group. SU(2) is a group of matrices so obviously one �representation� is the one in which Q isrepresented by itself! This is called the �self� or �fundamental� representation. (It is, again, perhaps slightly puzzlingat �rst to contemplate other representations, namely bigger matrices which, in fact, have the same multiplication lawas the Q's do. It's the same as in SO(3).) As indicated above, the representations of SU(2) must be closely related tothose of SO(3). Remember that we can label representations of SO(3) with di�erent spin quantum numbers jj;mji.In the language of spin, clearly the two dimensional fundamental representation has �isospin� 12 , as we have alreadysuggested. However there are three dimensional representations of SU(2) ( with isospin 1) , four dimensional ones3



(with isospin 32) etc. There are many ways of �nding these representations explicitly - the (new to us) way we shallnow discuss is called �The Tensor Method�.First consider an analogy from SO(3). Let's start with a vector r1 = (x1; y1; z1) which forms a basis for the threedimensional representation of SO(3) as we have seen. Now consider a second vector r2: what kind of products canwe make from r1 and r2? Well, if we take any one component of r1, say r1i (i = x; y; z) and any component r2jof r2 (j = x; y; z) and then multiply them, we end up with nine things, r1xr2x; r1xr2y; ::::; r1zr2z. Under an SO(3)transformation (a rotation), r1 ! r01 = Rr1 and r2 ! r02 = Rr2. Both r01 and r02 are just linear combinations of theoriginal components r1 and r2. So under an SO(3) rotation,r1ir2j ! r01ir02j = PpRipr1pPqRjqr2q= PpPq RipRjqr1pr2qwhich is some linear combination of the original nine things, r1pr2q :0BBBBBBBBBBBB@ r01xr02xr01xr02yr01xr02z:::::: 1CCCCCCCCCCCCA = 0BBBBBBBBBBBB@ 9 � 9Matrix 1CCCCCCCCCCCCA0BBBBBBBBBBBB@ r1xr2xr1xr2yr1xr2z:::::: 1CCCCCCCCCCCCAThis 9� 9 matrix does, in fact, represent this rotation using the 9 things { r1ir2j } as a basis.But there's a snag.....This representation is reducible. This is a crucial new concept. What it means, in this case,and in others by generalisation, is that we are not, in fact, looking at a genuinely nine-dimensional representation atall (which would correspond to a �j� of 4). If we were to consider some actual rotation, we would indeed be able to�nd all the entries in the above 9 �9 matrix, showing that the nine base elements are transforming linearly amongthemselves as the members of a decent basis should. But all is not quite as it seems. In general, we are perfectlyentitled to pick any linear combinations of basis elements, and use these linear combinations as the new basis elementsin place of the old ones. And if we do this in the right way (see below) we shall �nd that when the transformationequation (for any rotation) is written out in terms of the new basis elements, it contains a great many zeros! In factit turns out that subsets of the 9 new basis elements transform only among themselves, not mixing up with otherbasis elements at all (hence the zeros). But this must mean that they form the basis for representations of lowerdimensionality than 9! That is why the apparent dimensionality of �9� is an illusion. The 9-dimensional representationwe have got (in terms of 9 � 9 matrices) is indeed a representation, but it can be reduced, which means it containswithin it representations of lower dimensionality, which can't be further reduced, and are irreducible. Physics wantsto get down to the irreducible representations, which are the true �building blocks�.We actually know very well, from elementary vector algebra, that certain combinations of products of r1 and r2transform only among themselves under SO(3) rotations. For example, r1:r2 is an invariant: r01:r02 = r1:r2. Thismeans that the particular combination r1xr2x + r1yr2y + r1zr2z transforms all by itself, without involving any otherbits of r01ir02j, and it transforms trivially, with the matrix D(0)(R) = 1 :(r01:r02) = (1): (r1:r2) :The superscript �(0)� on the D matrix is consistent with our notation in Lecture 2: there we had three things, thecomponents of a vector r, transforming by a D(1). The superscript is actually the � l� - value, in quantum-mechanicalterms, such that 2l + 1 gives the dimensionality of the representation. For the invariant, the dimensionality is justone (only one element), so the l is 0. So if we were to start our column vector of nine basis elements with the entry �r1:r2� instead of with � r1xr2x � we would �nd that the 9 � 9 matrix had a �1� in the top left hand corner, and thatthe rest of the �rst row and �rst column were all zeros. So the 9� 9 matrix would be �partitioned� into a �1� and an8� 8 matrix bordered by zeros.Is the 8� 8 matrix irreducible? No, because we know of another subset of those products r1ir2j which transformentirely among themselves - namely the three objects comprising the components of the cross product r1 � r2:0@ r1yr2z � r1zr2yr1zr2x � r1xr2zr1xr2y � r1yr2x 1A :4



These provide the basis for a three dimensional (or �vector�) basis of SO(3). Just as before, this means that if we writethese three quantities as the second, third and fourth entries in our column of 9 basis elements (after the invariantr1:r2 ), we shall �nd that rows 2, 3 and 4 of the 9 � 9 transformation matrix have entries in the columns 2, 3 and 4and zeros elsewhere. Indeed, the non-zero bits form a 3� 3 matrix, which is of course correct for the way in which avector r1 � r2 transforms. In fact this 3 � 3 matrix is just a D(1) i.e. � l = 1� as appropriate to a three-dimensionalrepresentation.So we have reduced the 9� 9 matrix to a 1� 1 matrix and a 3� 3 matrix each bordered by zeros (i.e. disconnectedfrom the rest), and this leaves a 5� 5 matrix. At this point we must be very careful to make sure we do not includein the last 5 basis elements any which (in our reorganisation) we have already used up. The way to make sure there isno �overlap� with the three things in r1 � r2 is to observe that the cross product is antisymmetric under interchangeof the components of r1 and r2, so if we choose symmetrical combinations they can have nothing to do with thecross product bits. However the scalar product r1:r2 is symmetrical, so we have not to count this one twice. Thesymmetrical products are 12 (r1ir2j + r1jr2i) - the 12 is put in for convenience - which amount to 6 objects in all. Thisalready warns us that we have one too many. We must subtract from this set of 6 objects the sum of the three termsin which i is equal to j - because this is just r1:r2 ! This produces 5 elements which are indeed independent of theinvariant r1:r2 and the vector r1 � r2 and form the components of a symmetrical traceless second rank tensor:12 (r1ir2j + r1jr2i)� 13�ijr1:r2:These �ve things do in fact form the basis for an irreducible 5-dimensional representation of the rotation group, andcan't be reduced any further. So they transform by a matrix D(2), the �rst time we have met this one (it has � l = 2� appropriate to dimension 2l + 1 = 5 ).Some of the above words may be unfamiliar or a bit rusty. The �trace� of a matrix Aij is de�ned to be the sum ofits diagonal elements - i.e. the result of putting i = j and summing over all their values. The symbol �ij is de�nedto be zero if i 6= j and to be 1 if i = j. So when we take the trace of the matrix �ij with i and j running over threevalues we get just 3. You can now check that the above 5 things are indeed �traceless� in the sense that if you puti = j and sum, you get zero.It's a little curious that, when people are taught how to take �scalar products� and �vector products� of two vectorsr1 and r2 they aren't also told what happens to the other 5 terms in all the 9 of �r1ir2j� ! Anyway, we have seen thatthey form the elements of something new - not a scalar, not a vector, not a spinor, but a second rank tensor.There is a handy way of writing what we have been doing in terms of theD 's. Our original reducible representationcan usefully be denoted by D(1
1) since we are �open producting� an l = 1 object ( r1 ) with another l = 1 object (r2 ). This 9� 9 matrix separates out (after judicious reorganisation of the basis) into a D(0), a D(1) and a D(2):D(1
1) = D(0) �D(1) �D(2)the � denoting, as before, that the �addition� must be understood as being �on top of�- i.e. increasing the dimensionality. It will not have escaped the student's notice that all the above is exactly the same as combining two quantum-mechanical angular momenta with l = 1. We can represent the process as (using bold face numbers to denotedimensionality): 3 
 3 = 1 � 3 � 5# # # # #l = 1 l = 1 l = 0 l = 1 l = 2The generalisation to the �tensor product� of two higher-dimensional representations is similar:D(j1
j2) = D(j1+j2) �D(j1+j2�1) � ::::::::::::�Djj1�j2j:What general rule can we learn from all this? We don't have time to develop the theory to explain why, but thisis the rule: the bases for irreducible representations of groups like the ones we are interested in are provided by thetraceless tensors of de�nite symmetry - recall that r1:r2 is symmetric, r1 � r2 is antisymmetric, and the l = 2 tensoris symmetric.All right...now we shall do much the same thing for SU(2). Let's combine two SU(2) doublets, just as we combinedtwo SO(3) triplets. we label the components of the �rst doublet p1; p2 and those of the second doublet q1; q2. Considerthen the four products qipj (i = 1; 2 j = 1; 2). These separate into three symmetric combinations qipj + qjpi and5



one antisymmetric combination qipj � qjpi (i.e. q1p2 � q2p1). If we think of these as spins � "# � then what we aresaying is that ""# + #"#are three things that form the basis of a 3-D representation (spin�1) and"# � #"is an antisymmetric thing that forms the basis of a 1-D representation (spin�0). Symbolically,2 
 2 = 3 � 1# # # #spin � 12 spin� 12 spin� 1 spin � 0...as in quantum mechanics (again).Example: Two Nucleons. pp; np+ pnp2 ; nn have I = 1pn� npp2 is I = 0 (deuteron):In the case of SU(2) it is interesting to introduce something that is not so far seen (for SO(3) or the Lorentz group),which is the complex conjugate representation (i.e. we go from considering 2 to 2� ). If q0 = Qq then q0� = Q�q i.eit transforms by Q� and not Q. What is the physical interpretation of this �complex conjugate� representation?The answer is that it describes antiparticles, this is because if q0 = e� i2�n:�q then q0� = e i2�n:��q� which is saying,in particular, that the sign of the third component of � is reversed ( since ��3 = �3 ). This is an additive quantumnumber and it is these which get reversed on the exchange particle$antiparticle. So if we have, say, (dropping theirrelevant �  � now), � ud � I3 = +12I3 = �12we will associate �u�� with I3 = �12 and �d�� with I3 = +12 and so we write� d�u� � or � �u�d � ;to indicate the antiparticles.However, there is a slightly tricky point here, which is that if we want to use the usual spin�12 couplingrules, we need to work with � �d�u� � or alternatively � d��u� � I3 = +12I3 = �12 :For example, assuming this rule, the possible components of an antiquark doublet and a quark doublet would be"# � d��u� � and � ud � "# :Then, using the usual quantum-mechanical rule for coupling two spin - 12 particles, the singlet combination is propor-tional to "# � #"i:e:d�d � (�u�)u = d�d + u�dwhich is, in fact, (u�d�)� ud � :6



How would we get this if we hadn't been told about that minus sign needed when coupling the components ofantiparticle isospinors? Well, if q = � ud � then (u�d�)� ud � = qyqand under an SU(2) transformation qyq ! q0yq0 = qyQyQq = qyqsince QyQ = I, so indeed the combination qyq is invariant, i.e. is a singlet.What about the triplet? Applying the spin - 12 coupling rules, this would be""1p2 ("# + #")## d�u1p2 (d�d� u�u)�u�d I3 = +1I3 = 0I3 = �1 9=; I = 1:We are here using freely the notation I for the magnitude of the total isospin ( it would be J for genuine angularmomentum) and I3 for the third component.There is another very useful way of writing this triplet in terms of the �qy....q� notation. Consider the threequantities qy � q = V: V1 = qy�1q = (u�d�)� 0 11 0 �� ud � = u�d + d�uV2 = qy�2q = (u�d�)� 0 �ii 0 �� ud � = �iu�d + id�uV3 = qy�3q = (u�d�)� 1 00 �1 �� ud � = u�u � d�dNote that V1 and V2 do not have a de�nite value of I3: the term u�d has I3 = �1 and the term d�u has I3 = +1.This is because they are the analogues of the Cartesian components x; y rather than of the combinations x+ iy; x� iywhich have de�nite Lz , namely Lz = +1 and �1 respectively. So consider instead the analogous combinations:V1 + iV2 = (u�d+ d�u) + i (�iu�d+ d�u) = 2u�d ! u� (#) d (#) � ��V1 � iV2 = (u�d+ d�u) � i (�iu�d+ d�u) = 2d�u ! d� (")u (") � �+V3 = u�u� d�d = ! u�(#)u(")�d�(")d(#)p2 � �0(note V3 has been normalised). A common and compact way of writing these particular combinations is to regardthem as the entries in the Hermitian 2� 2 matrix V:� .This exercise has constructed explicitly the ��avour wavefunctions� for the isospin singlet ( qyq ) and isospin triplet( qy � q ) couplings of a quark and an antiquark. In practice, it is just these kinds of wavefunctions that we need toknow for many purposes.Finally, we can usefully apply what we have just learned to the case of a �real� J = 12 spinor �. It must be thecase that �y� � transforms as an SO(3) vector.This is easy to check. Under in�nitesimal SO(3) transformations, �! �1� i2a:� �� soV = �y� �! V0 = �y�1 + i2a:�� � �1� i2a:���Now � y = �and so V = �y� �! V0 = V + i�y�12a:�� � �� i�y� �12a:���:7



Consider V1: V 01 = V1 + i2�y ((a:� )�1 � �1(a:� )) �= V1 + i2�y ((a1�1 + a2�2 + a3�3)�1 � �1(a1�1 + a2�2 + a3�3))�= V1 + i2�y (�1 � ia2�3 + i�2a3 � a1 � ia2�3 + i�2a3)�= V1 + a2�y�3�� a3�y�2�= V1 + a2V3 � �3V2Compare this with �V0 = V + a�V� - it is correct for a vector V! So �y� � behaves as a vector under rotations!Example Verify the 4-dimensional generalisation of this: that if  is a 4-component Dirac spinor, then the fourquantities ( y ;  y� ) transform under Lorentz trandformations as the components of a 4-vector (  y is the Diracprobability density �, and (  y� ) is the Dirac probability current density j, and � = (�1; �2; �3) are the threeDirac matrices as in Lecture 4. The notation can be (and always is) streamlined by using Feynman's 
 matrices,
0 = �; 
 = �� , and the de�nition � =  y
0. Then this 4-vector current is j� = � 
� .
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