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Lecture 5:

The Group SU(2): “Isospin” and “Internal Symmetry”.

In this and the next Lecture (on SU(3)) we move away from “space-time” symmetries (translations, rotations, LT’s)
and consider “internal” symmetries. The basic approach, however, will be very similar to that in the “Symmetry and
Degeneracy” section of Lecture 2, at least to begin with. The first difference will be that whereas in Lecture 2 we
were considering degeneracies such as the 2{ 4+ 1 - fold degeneracy of states with different L, eigenvalue for given
l, here we shall be typically considering mass degeneracies between particle states differing in their charge, or other
“internal” quantum numbers. The second difference is that the transformations we shall be considering are not real-
space rotations, or whatever, but rather unitary transformations in the space of the degenerate states. This is always
allowed in quantum mechanics, and of course the spatial rotations were, as we saw, unitary operations. Here, though,
the thing is slightly more abstract.

Consider, for example, the (near) degeneracy between the proton and the neutron masses, or between the up and
down quark masses. Let’s pretend, in fact, that the up and down quarks are exactly degenerate in mass, and let’s
associate with them amplitudes (“flavour wavefunctions”) ¢, and 4 respectively. Then the u - d degeneracy means
that we can equally well choose to describe the situation in terms of alternative amplitudes ), and ¢/, where the
primed amplitudes are linear combinations of the unprimed ones, as given by some matrix Q:

v, ) _ ( Pu )
( vy ) « Va
where Q is unitary so as to preserve the normalisation of the states. This is, of course, exactly the same kind of

Y

Uq
The result at the end of Lecture 3 tells us the form of Q, in fact. We obtained it there by a bit of guesswork,

and by analogy with the transformation law we had worked out explicitly for a vector. We shall begin our internal
symmetry discussion by deriving the form of Q another way, which will be useful in other cases.

The general unitary 2 x 2 matrix transforming a two-component doublet, as above, will be denoted by U. Since
U is unitary,

transformation as we saw for the spinors ¢ and y , and the 2-component object is called an “isospinor”.

Ulu =1
This implies
det (UTU) =1
= (det U)" (det U) =1 = |det U| =1
= det U = €',

Such matrices belong to the group U(2) ( the group of unitary 2 x 2 matrices; recall the group axioms of Lecture 2
). Suppose we transform ¥, and 4 by ! = ¢'¥4, and Y = e*%14 i.e an overall phase redefinition . Then for this
transformation )
629 0 2i6
U= 0 it and det U = e“*".
Such transformations, which change the ¢, and ¢4 amplitudes by the same phase are physically irrelevant (in our
little u-d world), and we can eliminate them by requiring det U = 1 (i.e. & = 0 ). In this case U becomes a member of



the group SU(2) (the S is for special i.e. det U = 1). Such matrices we denote by Q. Note that this is another group
of matrices.

As we shall see (again) we can establish all of the physical consequences by considering infinitesimal forms of the
transformation (as in the case of infinitesimal rotations). An infinitesimal SU(2) trasformation differs infinitesimally
from doing nothing, which is the identity matrix; so we write

QM =1—i¢
where ¢ is an infinitesimal 2 x 2 matrix i.e. its elements are all infinitesimal. The condition QTQ = I then requires
(1+ieh) @-ig) =1
which implies €T = £ to first order i.e. & is Hermitian (as was the case for the Tsin angular momentum). Also,
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i.e. the det Q = 1 constraint means & is traceless. So we can write £ in terms of three real parameters a, b and c:
a b—1c
€= ( b+ic —a )

as ay _ idp 1
_ 2 2 2 —
& = ay [ iy as _2a.0'.
2 2 2

This is exactly as we found for the “space-time” spinors ¢ and y. But in order to distinguish these “internal” trans-

which we can write as

formations from the space-time ones, 1t is usual to use a different notation for the o matrices; we call them the 7
matrices instead. So for internal rotations, Q! =1 — %a.r and Q/finite = e~390.7  There are three parameters in
play here, whether the transformation is infinitesimal (the three a’s), or finite; in the latter case we have a and two
parameters specifying the unit vector n. And this way or writing Q"¢ is in fact a way of writing the most general
SU(2) matrix Q.

So however you look at it, whether as a real space-time doublet or in internal space doublet, the transformation
law is the same and is basically just an SU(2) matrix. This is why the u-d doublet is called an isospinor (from nuclear
“isospin” originally). We shall see even more analogies between SU(2) and rotations (i.e. SO(3)) in a minute. Anyway,
under finite SU(2) transformations, we have learned that
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Note that

So ( 1/6” ) is a state with third component of 1sospin equal to while ( 1/? ) has component - % And of course
d

the manitude of the isospin is I = %

So far we have only got as far as defining the group SU(2), writing the general element Q in a way that is after
all quite familiar from earlier work, and seeing how the associated two-component column vectors transform. Now
we want to start doing for SU(2) the sorts of things we did for SO(3) and the Lorentz group i.e we want to find the
algebra and matriz representations of the algebra.

To find the algebra of SU(2), we follow the exact analogue of the “Ur¢(r) = ¢/(R~!r)” kind of thing we did for
SO(3). Let’s rename the two amplitudes ¢, and ¢4 as ¢ = q; . The quantities ¢; and ¢2 can be regarded as

complex “coordinates” in this two-dimensional complex vector space. An SU(2) transformation in this “space” is:

g—q =Qq



where Q is an SU(2) matrix. We can construct functions of these coordinates, ¥ (¢, ¢2), which we can think of as
analogous to our wavefunction ¢ (r). Then for any such ¢(g1, ¢2) the corresponding transformed ¢ will be

¥(q)" = Uqi(q)

where for consistency between the primed and unprimed descriptions

P(g) = ¥(Q " q)

and this will give us the rule for how these 1’s transform. The right hand side is, for an infinitesimal transformation:

¥ (Q'q) ¢ ((1+%a.7)q)
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Expanding this as usual for a Taylor series of a function of two variables we have,

. 8 . 8 : 9
U (q1,92) = ¥ (q1,92) +l—a32q1.a—i —I—l—alz%.a—f1 —1-2(122(12.3—w1
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. We write this in the traditional way for all infinitesimal transformations:

= Uq¥ (q1,¢2) = (I - iaj{) Y (q1,92)

where this time

_ 42 9 _ ¢ 0
X 2°'9q1 2 9g2
e i 8 _ iqn 8
X = Hag T Tag
X3 ¢ 0 _|_<12 2]

)A(l,)?z and X3 are the generators of SU(2) just as L = r x p are for SO(3).
Now, what about the algebra of these generators? It is an interesting exercise to work out the commutation relations
for the generators X as given above; one finds

[)?1,5(2} = iXs

just as for the generators of SO(3)! We say that SU(2) and SO(3) “have the same algebra” (i.e. their generators
obey the same commutation relations). Clearly, then, the groups SO(3) and SU(2) are very closely related, if their
generators commute in exactly the same way. This implies, in fact, that the matrices representing their generators in
any representation must be the same - since after all, a matrix representation of the generators is just a set of matrices
with the same commutation relations as the generators. So the whole business of representations of SU(2) boils down,
more or less, to taking over the results already learned in SO(3). This is of course an even better reason to regard
SU(2) transformations as some kind of “internal space rotations”.

However, rather than just take the stuff over blindly from SO(3), we shall investigate a way of getting SU(2)
representations which is slightly different from the ways we used for SO(3), and which will be easily generalised to
SU(3).

Representations of SU(2)

Remember that a “representation” of a group is a set of matrices that satisfy the same multiplication law as the
elements of the group. SU(2) is a group of matrices so obviously one “representation” is the one in which Q is
represented by itself! This is called the “self” or “fundamental” representation. (It is, again, perhaps slightly puzzling
at first to contemplate other representations, namely bigger matrices which, in fact, have the same multiplication law
as the Q’s do. Tt’s the same as in SO(3).) As indicated above, the representations of SU(2) must be closely related to
those of SO(3). Remember that we can label representations of SO(3) with different spin quantum numbers |j, m;).
In the language of spin, clearly the two dimensional fundamental representation has “isospin” %, as we have already
suggested. However there are three dimensional representations of SU(2) ( with isospin 1) , four dimensional ones




(with isospin %) etc. There are many ways of finding these representations explicitly - the (new to us) way we shall
now discuss is called “The Tensor Method”.

First consider an analogy from SO(3). Let’s start with a vector r1 = (21, 41, 21) which forms a basis for the three
dimensional representation of SO(3) as we have seen. Now consider a second vector ra: what kind of products can
we make from rq and ry? Well, if we take any one component of rq, say ry; (¢ = z,y,2) and any component ry;
of v (j = «,y,2) and then multiply them, we end up with nine things, ri;rs, risrsy, ..., r1.r2,. Under an SO(3)
transformation (a rotation), r; — r{ = Rr; and r2 — r), = Rry. Both v} and r} are just linear combinations of the

original components r; and rz. So under an SO(3) rotation,

: . ! ! — . .
r1i¥a;  — Tyl = Zp Riprip Zq Rjqraq
= Zp Zq RipRjoriprag
which is some linear combination of the original nine things, r{,ra, :
/ /
ry,Top Tiglogp
/ /
rleZy TigpT2y
/ /
T, Ty, Tigla;
9 X 9
Matrix

This 9 x 9 matrix does, in fact, represent this rotation using the 9 things { ri;ro; } as a basis.

But there’s a snag.....This representation is reducible. This is a crucial new concept. What it means, in this case,
and in others by generalisation, is that we are not, in fact, looking at a genuinely nine-dimensional representation at
all (which would correspond to a “j7 of 4). If we were to consider some actual rotation, we would indeed be able to
find all the entries in the above 9 x9 matrix, showing that the nine base elements are transforming linearly among
themselves as the members of a decent basis should. But all is not quite as it seems. In general, we are perfectly
entitled to pick any linear combinations of basis elements, and use these linear combinations as the new basis elements
in place of the old ones. And if we do this in the right way (see below) we shall find that when the transformation
equation (for any rotation) is written out in terms of the new basis elements, it contains a great many zeros! In fact
it turns out that subsets of the 9 new basis elements transform only among themselves, not mixing up with other
basis elements at all (hence the zeros). But this must mean that they form the basis for representations of lower
dimensionality than 9! That is why the apparent dimensionality of “9” is an illusion. The 9-dimensional representation
we have got (in terms of 9 x 9 matrices) is indeed a representation, but it can be reduced, which means it contains
within it representations of lower dimensionality, which can’t be further reduced, and are irreducible. Physics wants
to get down to the irreducible representations, which are the true “building blocks”.

We actually know very well, from elementary vector algebra, that certain combinations of products of r; and rs
transform only among themselves under SO(3) rotations. For example, ry.ry is an invariant: v}.r, = ry.re. This
means that the particular combination ri,r2, + riyray + r1,r2. transforms all by itself, without involving any other
bits of r{,r,;, and it transforms trivially, with the matrix DOR)=1:

(r).rh) = (1). (r1.12) .

The superscript “(0)” on the D matrix is consistent with our notation in Lecture 2: there we had three things, the
components of a vector r, transforming by a D). The superscript is actually the “ I” - value, in quantum-mechanical
terms, such that 2/ + 1 gives the dimensionality of the representation. For the invariant, the dimensionality is just
one (only one element), so the [ is 0. So if we were to start our column vector of nine basis elements with the entry “
r1.ry” instead of with “ ri.re,; ” we would find that the 9 x 9 matrix had a “1” in the top left hand corner, and that
the rest of the first row and first column were all zeros. So the 9 x 9 matrix would be “partitioned” into a “1” and an
8 x 8 matrix bordered by zeros.

Is the 8 x 8 matrix irreducible? No, because we know of another subset of those products ri;rs; which transform
entirely among themselves - namely the three objects comprising the components of the cross product r; x rs:

riyra; — I1;Tay
TizT2; — TYigpl2e
Tigl2y — Tiylag



These provide the basis for a three dimensional (or “vector”) basis of SO(3). Just as before, this means that if we write
these three quantities as the second, third and fourth entries in our column of 9 basis elements (after the invariant
ri.re ), we shall find that rows 2, 3 and 4 of the 9 x 9 transformation matrix have entries in the columns 2, 3 and 4
and zeros elsewhere. Indeed, the non-zero bits form a 3 x 3 matrix, which is of course correct for the way in which a
vector ¥y X ro transforms. In fact this 3 x 3 matrix is just a D) i.e. “ 1 = 17 as appropriate to a three-dimensional
representation.

So we have reduced the 9 x 9 matrix to a 1 x 1 matrix and a 3 x 3 matrix each bordered by zeros (i.e. disconnected
from the rest), and this leaves a 5 x 5 matrix. At this point we must be very careful to make sure we do not include
in the last 5 basis elements any which (in our reorganisation) we have already used up. The way to make sure there is
no “overlap” with the three things in r1 X rs is to observe that the cross product is antisymmetric under interchange
of the components of r1 and rs, so if we choose symmetrical combinations they can have nothing to do with the
cross product bits. However the scalar product r;.rs is symmetrical, so we have not to count this one twice. The
symmetrical products are % (r1;r9; + r1519;) - the % 1s put in for convenience - which amount to 6 objects in all. This
already warns us that we have one too many. We must subtract from this set of 6 objects the sum of the three terms
in which ¢ is equal to j - because this is just ry.ro ! This produces 5 elements which are indeed independent of the
invariant ry.rs and the vector ry X ro and form the components of a symmetrical traceless second rank tensor:

! (r1iroj + ri;r9;) — l(52"7'1(‘1~1(‘2~

2 3

These five things do in fact form the basis for an irreducible 5-dimensional representation of the rotation group, and
can’t be reduced any further. So they transform by a matrix D(2)| the first time we have met this one (it has “ 1 =2
” appropriate to dimension 2/ + 1 =5 ).

Some of the above words may be unfamiliar or a bit rusty. The “trace” of a matrix A;; is defined to be the sum of
its diagonal elements - i.e. the result of putting ¢ = j and summing over all their values. The symbol d;; is defined
to be zero if ¢ # j and to be 1 if ¢ = j. So when we take the trace of the matrix J;; with ¢ and j running over three
values we get just 3. You can now check that the above 5 things are indeed “traceless” in the sense that if you put
¢ = j and sum, you get zero.

It’s a little curious that, when people are taught how to take “scalar products” and “vector products” of two vectors
ri and ry they aren’t also told what happens to the other 5 terms in all the 9 of “ry;ro;” ! Anyway, we have seen that
they form the elements of something new - not a scalar, not a vector, not a spinor, but a second rank tensor.

There is a handy way of writing what we have been doing in terms of the D ’s. Our original reducible representation
can usefully be denoted by DU®Y since we are “open producting” an [ = 1 object ( vy ) with another [ = 1 object (
ro ). This 9 X 9 matrix separates out (after judicious reorganisation of the basis) into a D® a D® and a D3):

DUeD — DO ¢ DM ¢ D@
the & denoting, as before, that the “addition” must be understood as being “on top of - 1.e. increasing the dimensionality

It will not have escaped the student’s notice that all the above 1s exactly the same as combining two quantum-

mechanical angular momenta with { = 1. We can represent the process as (using bold face numbers to denote
dimensionality):
3 ® 3 = 1 S 3 S 5
I I 1 I I
=1 =1 [=0 =1 =2

What general rule can we learn from all this? We don’t have time to develop the theory to explain why, but this
is the rule: the bases for irreducible representations of groups like the ones we are interested in are provided by the
traceless tensors of definite symmetry - recall that ri.ry is symmetric, r1 X rp is antisymmetric, and the | = 2 tensor
1s symmetric.

All right...now we shall do much the same thing for SU(2). Let’s combine two SU(2) doublets, just as we combined
two SO(3) triplets. we label the components of the first doublet p1, p2 and those of the second doublet ¢1, ¢2. Consider
then the four products ¢;p; (¢ = 1,2 j = 1,2). These separate into three symmetric combinations ¢;p; + ¢;p; and



one antisymmetric combination ¢;p; — ¢;p; (i.e. g1p2 — ¢ap1). If we think of these as spins ( I ) then what we are
saying is that

/l\
Hor
1
are three things that form the basis of a 3-D representation (spin—1) and
-4
is an antisymmetric thing that forms the basis of a 1-D representation (spin—0). Symbolically,
2 ® 2 = 3 © 1
I I I I
spin — % spin — % spin — 1 spin — 0
...as in quantum mechanics (again).
Example: Two Nucleons.
np+pn
,———,nn have I = 1
pp \/5

pn —np
V2

In the case of SU(2) it is interesting to introduce something that is not so far seen (for SO(3) or the Lorentz group),
which is the complex conjugate representation (i.e. we go from considering 2 to 2*). If ¢’ = Qq then ¢" = Q¢ i.e

it transforms by Q* and not Q. What is the physical interpretation of this “complex conjugate” representation?
Lan.t*

The answer is that it describes antiparticles, this is because if ¢/ = e~ %™ 7¢ then ¢/ = e q* which is saying,
in particular, that the sign of the third component of 7 is reversed ( since 75 = 73 ). This is an additive quantum
number and it is these which get reversed on the exchange particlecrantiparticle. So if we have, say, (dropping the

irrelevant “ ¢ ” now),
u I3 =+
d Is = —
we will associate “u*” with Is = —% and “d*” with I3 = —|—% and so we write
d*
() ().
to indicate the antiparticles.
However, there is a slightly tricky point here, which is that if we want to use the usual spin—% coupling
d* I3 = —I—%
—u* 13 = —% ’
For example, assuming this rule, the possible components of an antiquark doublet and a quark doublet would be

oo ) 1
POoe)ma(3) 1

Then, using the usual quantum-mechanical rule for coupling two spin - % particles, the singlet combination is propor-

tional to
-
l.e.

dd — (—u)u = dd + ud

(u*d*) ( ?z )

is I =0 (deuteron).

=] 4|

_A*
rules, we need to work with uci ) or alternatively (

which 1s, in fact,



How would we get this if we hadn’t been told about that minus sign needed when coupling the components of

(u™d”) ( y ) =q'q

d'¢ = ¢T¢ =4'QTQq = 4¢'¢

antiparticle isospinors? Well, if ¢ = ( Z ) then

and under an SU(2) transformation

since QTQ =1, so indeed the combination ¢q is invariant, i.e. is a singlet.
What about the triplet? Applying the spin - % coupling rules; this would be

™ d*u Iy =+1
75 M+ S(dd—uw) =0 § I=1
i —utd I=-1

We are here using freely the notation I for the magnitude of the total isospin ( it would be J for genuine angular
momentum) and I3 for the third component.

There is another very useful way of writing this triplet in terms of the “gf....¢” notation. Consider the three
quantities ¢t 7¢ =V:

Vi = ¢'rg = (u*d*)(? é)(;) = ud + d'u
Vo = ¢img = (u*d*)(? _OZ)<Z) = —w*d + id*u

Vs = qimg = (U*d*)<é _01)<Z) = e oo

Note that V7 and V5 do not have a definite value of I3: the term u*d has I3 = —1 and the term d*u has I3 = +1.
This is because they are the analogues of the Cartesian components z, y rather than of the combinations z + iy, z — iy
which have definite L,, namely L, = +1 and —1 respectively. So consider instead the analogous combinations:

i + Ve = (wd+d'v) 4+ i(—iwd+d'v) = 2u'd — u* (1) d ) ~ T
Vi — iV = (wd4du) — i(—iwrdtdin) = 2w = & (Dud) o~ at
Vo = wu—-d*d = N U*(i)U(Ti/—_d*(T)d(i) ~ g0

2

(note V3 has been normalised). A common and compact way of writing these particular combinations is to regard
them as the entries in the Hermitian 2 X 2 matrix V. 7.

This exercise has constructed explicitly the “flavour wavefunctions” for the isospin singlet ( ¢'¢ ) and isospin triplet
( ¢'7¢ ) couplings of a quark and an antiquark. In practice, it is just these kinds of wavefunctions that we need to
know for many purposes.

Finally, we can usefully apply what we have just learned to the case of a “real” J = % spinor ¢. It must be the
case that ¢T & ¢ transforms as an SO(3) vector.

This is easy to check. Under infinitesimal SO(3) transformations, ¢ — (1 — %a. 0') ¢ so

V=9¢glop >V =¢ (1—1—%&.0’) o (1—%&.0’)(15

Now
cl=a

and so

V=0¢lop >V =V4ipl (%a.o) cd—idlo (%a.o)qb.



Consider V:

Vi = W
Vi
Vi
Vi

+++ 4+

¢ ((a.0)oy —or(a.a))

ot ((a101 + a202 + azoz)or — o1(a101 + a202 + azos)) ¢
Lot (e1 — iazos + iosas — ay — iazos + ioyas) ¢

ax¢lo3d — azgloag

asVa —e3Vs

i
2
z
2
z

Compare this with “V/ =V 4+ a x V” - it is correct for a vector V! So ¢! o ¢ behaves as a vector under rotations!

Example Verify the 4-dimensional generalisation of this: that if ¢ is a 4-component Dirac spinor, then the four
quantities (T4, ¢! ay)) transform under Lorentz trandformations as the components of a 4-vector ( 1T+ is the Dirac
probability density p, and ( ¥ e ) is the Dirac probability current density j, and a = (ay, as, a3) are the three
Dirac matrices as in Lecture 4. The notation can be (and always is) streamlined by using Feynman’s 4 matrices,
Y = B, = Ba, and the definition ¢ = ¢T~°. Then this 4-vector current is j* = ¢y*.



