
Introduction to SymmetriesI.J.R.AitchisonMarch 27, 2001Lecture 4:The Lorentz Group.Consider the relativistic spin-0 wave equation (the Klein - Gordon equation)� @2@t2 �r2 +m2� (x; t) = 0;(as usual we will use natural units �h = c = 1) which can be written as�@2 +m2� (x; t) = 0:Under rotations the operator @2 is invariant, and we know how  transforms under rotations. What about underLorentz boosts? i.e. pure velocity transformations of the formx0 = 
 (x+ vt)t0 = 
 (t + vx)y ! y0 = y and z ! z0 = z:We ask the familiar question: what wavefunction do the people in the (Lorentz boosted) primed frame use?As before we require  0 (r0; t0) =  (r; t)except that now t transforms as well as r, and the transformation is di�erent (not a 3-D rotation). Consider anin�nitesimal boost along the x-axis: x0 = 
 (x+ vt) ! x0 = x+ �tt0 = 
 (t+ vx) ! t0 = t+ �xy0 = y and z0 = z(
 ! 1) :Let's denote our Lorentz transform as LT, i.e. (r0; t0) = LT(r; t). We require 0 (r0; t0) =  (r; t))  0 (LT(r; t)) =  (r; t))  0 (r; t) =  �(LT)�1(r; t)�=  (x � �t; y; z; t� �x)=  (r; t)� �t@ (r;t)@x � �x@ (r;t)@t= �1 + i� bB1� (r; t)where bB1 = +i�t @@x + x @@t� :1



Similarly we have bB2 = +i�t @@y + y @@t� and bB3 = +i�t @@z + z @@t� ;and for the general in�nitesimal boost parametrised by the vector b (where b = � n with � an in�nitesimal speed andn a unit vector) we have  0(r; t) = (1 + ib:bB) (r; t):For a combined general in�nitesimal rotation and boost (the most general in�nitesimal Lorentz transformation on aspin-0 wavefunction) we have  0(r; t) = (1� ia:bL+ ib:bB) (r; t):The quantities bB are the generators of boosts. They clearly bear some resemblance to the generators of rotations,which are of course the angular momentum operators bLx; bLy and bLz : As in the case of 3-D rotations, we are interestedin the algebra of the bBi's and bLi's i.e the commutation relations between all of them. By straightforward calculationusing the above di�erential operators we �nd thath bBi; bBji = �i�ijkbLkhbLi; bBji = +i�ijk bBkas well as the usual hbLi; bLji = +i�ijkbLk:This is the algebra of the generators of the Lorentz group! There are 6 generators, 3 for rotations bLi and 3 for boostsbBi. One (new) thing to note is that the bBi's aren't Hermitian. In terms of this di�erential operator representationthis is a bit tricky and has to do with problems concerning the operator i�h @@t . We might think that this is just theenergy operator bE, but the trouble is that then there would be nothing to stop the eigenvalue of bE being negative(with wavefunction eijEjt=�h). Physically we require the spectrum of the energy eigenvalues to be non-negative and thisscrews up the hermiticity.Let's have a look at a matrix representation of these generators of the Lorentz group. As usual, we can �ndrepresentations by looking at in�nitesimal transformations, acting on some chosen set of basis functions. For examplewe can consider in�nitesimal Lorentz transformations acting on the four-vector (t; r), as parametrised byt0 = t+ b:rr0 = r+ bt + a � r:( b is an in�nitesimal velocity vector as before, while a speci�es an in�nitesimal rotation as we saw in Lecture 2). Itis easy to check that this leaves the �length� of the 4-vector unchanged to �rst order in a and b:t02 � r02 = t2 � r2:The �r0 = r + a � r� bit leaves the three-dimensional length invariant ( r02 = r2 ) as we saw in Lecture 2; the newfeature here is the extension of this to the 4-D length - which is of course the Minkowskian length t2 � r2 not theEuclidean one t2 + r2. We write the transformation as:0BB@ t0x0y0z0 1CCA = 0BB@ 1 bx by bzbx 1 �az ayby az 1 �axbz �ay ax 1 1CCA0BB@ txyz 1CCA :To be consistent with our notation for the operator associated with general in�nitesimal Lorentz transformations, wewrite the transformation matrix above as 1 � ia:L(v) + ib:B(v), where the superscripts denote that this is a speci�crepresentation, and where in this case �v � stands for �vector�. Picking out just the bit associated with ax, for example,we �nd L(v)x = 0BB@ 0 0 0 00 0 0 00 0 0 �i0 0 i 0 1CCA :2



Looking only at the spatial components of the matrix we �nd that L(v)x is simply L(1)x augmented above by a row ofzeros and on the left by a column of zeros. In the same way, we can �nd L(v)y and L(v)z . The same correspondence existsbetween L(v)y and L(1)y as well as between L(v)z and L(1)z , all of which are clearly Hermitian. The fact that essentiallythe same three angular momentum generators turn up again is no surprise, of course: as we said, the in�nitesimaltransformation we are considering includes the 3-D rotations, under which the time component of the 4-vector is �inert�(which accounts for those bordering rows and columns of zeros).On the other hand, when we go through the analogous procedure to pick out the matrices for the three boosts (asso-ciated with the parameters bx; by and bz ) we �nd that the three matrices representing the generators for the boosts arenot Hermitian: B(v)x = 0BB@ 0 �i 0 0�i 0 0 00 0 0 00 0 0 0 1CCAB(v)y = 0BB@ 0 0 �i 00 0 0 0�i 0 0 00 0 0 0 1CCAB(v)z = 0BB@ 0 0 0 �i0 0 0 00 0 0 0�i 0 0 0 1CCA :They are each, in fact, i times a Hermitian matrix. It is a simple matter to evaluate the various commutation relationsamong these matrices: hB(v)x ; B(v)y i = �iL(v)zhL(v)x ; B(v)y i = +iB(v)zhL(v)x ; L(v)y i = +iL(v)z :Note these are exactly the same as the commutators we obtained previously for the bBi's and bLi's, which wererepresented in terms of di�erential operators rather than matrices. In fact, we have clearly obtained a matrix repre-sentation of the generators! The bLi's are represented by the L(v)i 's, while the bBi 's are represented by the B(v)i 's.This is a four-dimensional representation, appropriate to the 4-D basis vector (t; r).Now we want to consider other representations, in particular spinor-type ones (which will lead us to the Diracequation). We start by slightly generalising and then simplifying the algebra , i.e. the commutation relations of thegenerators. First we generalise the rotation generators bL to bJ in order to include spin as well as orbital angularmomentum. So the algebra is now h bBi; bBji = �i�ijk bJkh bJi; bBji = +i�ijk bBkh bJi; bJji = +i�ijk bJk:This can be simpli�ed by the following trick: cM = 12 �bJ+ ibB�bN = 12 �bJ� ibB� :Then the algebra becomes: hcMi;cMji = +i�ijkcMkh bNi; bNji = +i�ijk bNk3



hcMi; bNji = 0:This is generally true for all representations. So the cMi's and bNi's behave just like two independent (because theycommute) angular momenta!Now, bJ and ibB are Hermitian, and so cM and bN are also Hermitian. This allows us to make use of the standardtheory of angular momentum in quantum mechanics to tell us about the representations of the Lorentz group! Wecan label the basis states in the same way that we label angular momentum eigenstates of a system with two angularmomenta (like two particles with spins bS1; bS2 for example). That is, we can label the states by the eigenvalues ofcM2;cM3; bN2 and bN3: ���eigenvalues of cM2;cM3; bN2; bN3E :Because they are like angular momenta, the eigenvalues of cM2 are of the form j(j + 1) with j = 0; 1=2; 1; 3=2::: andsimilarly for bN2; and the eigenvalues of cM3 are �j;�j + 1; :::0; :::; j for a given j; etc.Now consider the particular case where the eigenvalue of bN2 is zero and the eigenvalue of cM2 is 12 �12 + 1�. The�rst condition implies that the bN's are identically zero so that bJ = ibB, while the second gives cM = 12 �bJ+ ibB� = 12 � .Since these expressions for cM and bN refer to a particular representation, we should add superscripts on them toindicate that (just as we did for the L(v)'s, for instance). Pretty obviously, that superscript had better be essentially� 12 � because of the appearance of the sigma matrices and the eigenvalue j = 12 . However, it is slightly more subtlethan that: we have to account not only for the � halfness� of cM but also the �noughtness� of bN. So we shall writeJ( 12 ;0) + J( 12 ;0) = �) J( 12 ;0) = 12 �) B( 12 ;0) = �i2 � :We now recall that the general in�nitesimal transformation has the form � 1 � ia:bJ+ ib:bB�. In the present case,this becomes 1� ia:12 � + ib:�i2 � = 1� i2a:� + 12b:� : So a spinor wavefunction behaving like this transforms by�0 = �1� i2 � :a+ 12 � :b��:We have made a slight and trivial change of notation here: it makes no di�erence at all whether we write �a:� � or� � :a � since the a 's (and the b 's) are just numbers, so it doesn't matter which side of � we write them; this wayis more convenient when we discuss wave equations, below. Anyway, such a wavefunction is said to transform as the�(12 ; 0 ) � representation (or, to provide the basis for that representation). In terms of the Dirac state vector, it iswritten as ��12 ; 0�, where the �rst label refers to the �j � of cM2 and the second to the �j � of bN2. The eigenvalues ofcM3 and of bN3 are suppressed.Let us pause to take stock. The �1 � i2 � :a� part is just the same as what we had for in�nitesimal rotations oftwo-component spinors; the new part is the � 12 � :b: � which shows how such a wavefunction transforms under anin�nitesimal boost. To get the transformation for the �nite velocity case (�nite boost) we �exponentiate� the 12 � :bfactor (as in the �nite rotation case) to obtain �0 = e 12v�:n� = VB�for a boost with speed v along an axis n. Notice that the boost matrix VB is non-unitary,�e 12v�:n� :�e 12v�:n�y 6= 1(try it for the in�nitesimal case), whereas the corresponding operator for �nite rotations is unitary:�e i2��:n� :�e i2��:n�y = 1:4



Brie�y, the reason for this di�erence between the boost and rotation operators is that there are no �nite-dimensionalunitary representations of a non-compact group. By non-compact is meant that the space over which the parametersappearing in the transformation range is unbounded. In our case, 
 can approach in�nity as v approaches 1 ( c = 1),and we are considering a two-dimensional representation.What about the other similar case where the the eigenvalue of cM2 is zero and the eigenvalue of bN2 is 12 �12 + 1�?We call this the � (0; 12 ) � representation (with corresponding state vector j0; 12 i). In this representation we haveJ(0;12 ) = �iB(0; 12 ) from the �rst condition, and 12 (J(0;12 ) � iB(0;12 )) = 12 � from the second. This results inJ(0;12 ) + J(0;12 ) = �) J(0;12 ) = 12 �as before, while B(0;12 ) = +i2 �which is the negative of B( 12 ;0). So this time the in�nitesimal transformation is:�0 = �1� i2 � :a� 12 � :b��:This is how ���0; 12� � transforms. Note that the rotation part 1 � i2a:� is the same as before but the boost bit nowhas a minus sign in front of it �12b:� : This is the di�erence between these two types of spinor.Connection to wave equationsWe have arrived at the Lorentz transformation properties of the two types of spinor � and � via the �representationsof the Lorentz group� approach. In Lecture 3, however, we found how a spinor behaved under rotations by startingfrom a wave equation (the Pauli equation), and asking our standard question: what is the primed wave function? Itis natural to ask whether we can understand the transformation properties we have found for � and � in terms of thewave equations they satisfy.What are these wave equations? They clearly have to describe spin - 12 particles, but relativistically - so they cant bePauli equations. Actually, we know quite well that somehow the Dirac equation has got to make its appearance....butlet's pretend we don't know that, and start by considering massless particles, for which the energy-momentum relationis E2 = p2. A possible wave equation for such a free spin - 12 particle isi@ @t = � :bp :We can check this by writing  as the product of a plane-wave and a two-component spinor: = eip:r�iEt�:Then E� = � :p�;and by applying � :p to both sides of this equation and using (� :p)2 = p2 (see Lecture 3) we �nd that for consistencyE2 = p2 as required.Thus the equation satis�ed by the spinor � , in a frame in which the 4-momentum is (E;p), is(E � � :p)� = 0with E = jpj.Now consider an in�nitesimal Lorentz boost to a second (primed) frame, in which the 4-momentum isE0 = E + b:pp0 = p+ bE5



(compare the same thing for the coordinate 4-vector (t; r) ). In this primed frame, we have(E0 � � :p0)�0 = 0:So here is our question once again: what is the relation between � and �0 ?Actually we know the answer, of course! Except that we could be dealing with a � � � rather than a � � �.....Let'ssee. Assuming this � is indeed a � (12 ; 0) � kind of beast, we expect�0 = (1 + 12 � :b)�(there is no need to worry about 3-D rotations - the work of Lecture 3 guarantees that the � � :p � bit will transformcorrectly). Let's denote (1 + 12 � :b) by Vb. Then applying Vb�1 to the � equation, we have[Vb�1(E � � :p)Vb�1]Vb� = 0:The part in square brackets is (remember that b is in�nitesimal)(1� 12 � :b)(E � � :p)(1� 12 � :b)and it is a good exercise to check that, to �rst order in b , this is justE � � :p� E� :b+ b:p = E0 � � :p0 !Hence we �nd (E0 � � :p0)Vb� = 0and we can deduce that �0 = Vb�which is the (expected) answer to our question.What kind of physics does the spinor � describe? Since E = jpj, the � - equation can also be written as� � :pjpj �� = �which means that � is an eigenvector of the helicity operator (the projection of spin along the momentum direction)with eigenvalue +1.What about the opposite helicity state? This will be described by a � such that� :p� = �jpj�;which can also be written as (E + � :p)� = 0where the energy E = jpj is still positive. Obviously the notation suggests that � will be a � (0; 12) � animal. Let'scheck. This time we multiply the equation by Vb:[Vb(E + � :p)Vb]Vb�1� = 0and we �nd that the quantity in square brackets is indeed (E0 + � :p0) , allowing us to identify�0 = Vb�1� = (1� 12 � :b)�as expected.So the � 's describe massless spin - 12 particles with positive helicity (�right handed�) while the � 's describe oneswith negative helicity (�left handed�) - like antineutrinos and neutrinos, respectively, if they are massless. Thesemassless spin - 12 wave equations are called Weyl equations.How about the case of spin - 12 particles with mass? Here there is an important physics point to appreciate. Helicityis not a Lorentz invariant for massive particles, since we can always reverse the sense of the particle's momentum (and6



hence helicity) by transforming to a more rapidly moving frame - something that of course is not possible for masslessparticles. So we suspect that the mass term will couple � 's and � 's together. Indeed this is so. The analogousequations for massive particles are E� = � :p�+m�E� = �� :p�+m�:It is simple to check that for these equations to be consistent we needE2 = p2 +m2as required. Furthermore, it is left as an exercise for the student to check that the above coupled equations for � and� are indeed consistent with the transformation laws we have learned for � and �.These coupled massive equations can be written as a single equation by introducing the 4-component spinor  where  = � �� � ;which satis�es E = (� :p+ �m) where � = � � 00 �� � ; � = � 0 11 0 � :This is just the Dirac equation! - with a particular (�high energy�) representation of the � and � matrices. Thus wecan �nally say that the Dirac spinor  transforms as � j12 ; 0i � j0; 12 i �, the � meaning that we must place them �oneon top of the other�, and so double the dimensionality of the vector space, not add them �horizontally�.
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