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ABSTRACT

At previous SPIE meetings, we reported on an optoelectronic device that measures the complete polarization
state of incident infrared light in a single pixel and in a single frame for a narrow wavelength band ( δλ <0.05
µm). Using at least four quantum-well stacks and four linear gratings, each stacked alternating above the
other, the device uses the interference among light paths to create a distinct pattern of photocurrents at each
quantum-well stack coding for a specific polarization. In this paper, we will model the performance of this
device, a quantum-well infrared single-pixel polarimeter (QWISPP), in the setting of a Fourier transform
infrared (FTIR) imager. We model one column of QWISPP pixels detecting an interferogram. Using an
FTIR with randomly varying QWISPP pixels to detect the interferogram, we discovered a technique that
allows an 100× improvement in measured spectral-polarization uncertainty compared to the use of identical
QWISPP pixels in an FTIR or grating spectrometer. The technique also enables a 15× improvement in the
uniformity of the error across a sample spectrum. In other words, we turn into an advantage the imperfections
in fabricating an FPA of QWISPPs.

Keywords: FTIR imager, polarimeter, coregistered, Stokes vectors, remote sensing, spectral polarization
detector, polarization uncertainty

1. INTRODUCTION

With spectro-polarimetric imaging, one can remotely sense more information than with just spectral imaging.
There are a multitude of potential military and civilian advantages to spectropolarimetric sensors that can
be found in the cited references.1–4 In this paper, I will focus on a new type of spectro-polarimetric
imaging that combines the QWISPP pixel described in references5–7 with the FTIR imaging like that used
in references.8, 9

The next few paragraphs should answer the question: “What is special about a QWISPP?” Polarization
is normally detected by combining a polarization filter, like polarized sunglasses, with a spectrally sensitive
detector, like a digital camera or the human eye. With these tools, one can only detect one polarization
component at a time for the spectral range of the camera. To learn the actual polarization state, one needs
to compare multiple images taken with different orientations or rotations of the filter to extract the four
parameters needed to define the polarization state. A common basis to represent the polarization state is
the Stokes vector: S0 = I0 + I90, S1 = I0 − I90, S2 = I45 − I135, and S3 = IR − IL where IX is the measured
intensity of the light after passing through a linear filter at an orientation of X degrees, and IR and IL

are the measured intensities of right or left circularly polarized fraction of the light. A normalized Stokes
parameter is simply the Stokes parameter Sj divided by S0.

Naively, one may think no more than two of the four parameters that describe the polarization can
be extracted serially from a beam of light. One parameter can be found by measuring the absorption by
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one filter, and a second parameter by measuring the absorption of a complimentary filter directly after
the first filter. To challenge this misconception, we introduced in previous publications the quantum-well
infrared single-pixel polarimeter (QWISPP) that will detect all four components of the polarization at each
wavelength in a single pixel and in a single frame.5–7

In these previous papers, we reviewed other polarimeters that detect the polarization over spatially
separated pixels or by comparing images taken over time,3, 10, 11 and we reviewed the importance of pixel
registration for accurate polarization measurements.12 Since then, we have learned of a another polarimeter
design by Van Delden.13 In this new design the light from an individual pixel and wavelength is spread over
an entire focal plane array (FPA), and spatial interference across a 2D focal plane array is used to encode
the polarization. Their device operates at a single narrow spectral band. To form an image, one has to scan
point by point across the image.

A QWISPP is special and distinct from all previous polarimeters because it is the only device that detects
in a single physical pixel the four Stokes parameters. The QWISPP is a counter example to the misconception
that only two polarization parameters can be extracted serially from a beam of light; it eliminates registration
error; and it provides significant size and weight savings by reducing the number of pixels, beam splitters,
and optics by a factor of four.

Despite this unique set of capabilities, a QWISPP is not without problems. In addition to being ex-
tremely difficult to build,7 the physics of the QWISPP design makes the performance sensitive to more
than 17 parameters, including the wavelength of the incident light, the physical size of the QWISPP grat-
ing periods, the separation between gratings, and other structural dimensions. The QWISPP operates on
interference between light paths that diffract in all possible ways between the four sets of gratings. Because
the interference depends on the wavelength, the device must be illuminated by a narrow wavelength band
(δλ < 0.05 µm) to give a clean response that can be used to recover the polarization.

A single QWISPP pixel will have a widely varying performance at different wavelengths. The left side
of figure 1 shows the recovered uncertainty in normalized Stokes parameters for a single QWISPP structure
tiled across the FPA of a grating spectrometer. The QWISPP detects each Stokes parameters with a different
uncertainty at each wavelength. At some wavelengths, uncertainty is as low as 0.5 percent of a normalized
Stokes parameter. At other wavelengths, the uncertainty is 200 percent, twice as big as the signal.

In our previous publications, we suggested these characteristics meant the QWISPP needed to be used in
combination with a push-broom grating spectrometer. In a grating spectrometer, the unfortunate manufac-
turer would have the formidable task of optimizing each pixel for the wavelength incident at that position on
the FPA. The reality of semiconductor fabrication makes it practically impossible to fabricate an optimized
pixel in the correct position of an FPA. In this paper, we will show how to use an FTIR configuration and the
random pixel-to-pixel variation of the FPA to improve the average spectro-polarimetric uncertainty by 100×
and the uniformity in that uncertainty by 15×. The right and side of figure 1 demonstrates this improvement.
In other words, we turn into an advantage the imperfections in fabricating an FPA of QWISPPs.

The reader may ask: if the original purpose of the device was to detect all the information on a single pixel,
then why do we want to use an FTIR configuration where the information is spread over a linear column of
pixels? Even though we are distributing the detection over a column of QWISPP pixels, the QWISPP pixels
still eliminate registration errors and enable at least a 4× improvement in spectral-polarization resolution
for a given optics size and weight and a given FPA size when compared to the designs in references.3, 10, 11, 13

The use of QWISPP pixels also enables circular polarization detection which is problematic with other
snapshot polarimeter designs.10

2. THE QWISPP PIXEL

The QWISPP shown in figure 2 has four readouts from quantum-well stacks layered one above the other
and separated by linear gratings at various orientations; at least four layers are required for full polari-
metric detection. The gratings can be metal-semiconductor5 or dielectric-semiconductor.7, 14 The pixel-
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Figure 1. A side-by-side comparison of the error in determining the normalized Stokes parameters for a grating
spectrometer using an FPA with all identical QWISPP pixels versus an FTIR spectrometer using an FPA with
randomly varying QWISPP pixels. The left figure shows how a single QWISPP structure will be able to measure
the Stokes parameters with varying uncertainty at different wave numbers. The right figure shows the performance
improvement from an FTIR configuration with random pixel variations.
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Figure 2. Each quantum-well infrared single-pixel polarimeter (QWISPP) consists of four (or more) quantum-well
stacks that can be individually read and each separated by linear gratings at different orientations. To facilitate the
modeling of the device, the periods of the four layers are chosen such that they form a repeating unit cell.



polarimeter device detects the incident light’s polarization by exploiting the polarization-dependent absorp-
tion of quantum-well infrared photodetectors, the polarization-dependent diffraction from linear gratings,
and the polarization-dependent interference of electromagnetic waves.

Incident light Sin on a QWISPP pixel will produce a pattern of photocurrents R. The equation

Rj =

NR∑

k=1

Mji(k)Sin
i (k), (1)

shows this pattern of photocurrents Rj is a linear map from the Stokes vector Sin
i (k) with a wave vector

k = 2π/λ, or equivalently a wavelength λ, to the readouts (also called photocurrents) given by the vector Rj

where the indices j and i run through the dimensions of the respective vectors. These two vectors are related
by a matrix M that maps the four components of the incident light’s Stokes vector Sin

i to the four (or more)
photocurrents Rj where the index j runs from 1 to the number of readouts NR. For all the calculations in
this paper, NR = 4. One can further decrease the error compared to the results of this paper by letting
NR > 4 and designing the structure with a grating material that allows more light to penetrate to the
deepest layers of the device.14 The matrix M will be called the device’s polarization response matrix, and
in our model, M depends on more than 17 parameters including the structure of the pixel, the wavelength
of the incident light, and the incidence angle of the incident light. The dependence on all these parameters
is suppressed for simplicity.

The components of M at a spectral line can be found by calibrating the pixel polarimeter’s response
to polarized and unpolarized radiation at the spectral frequency. In this paper, we use a numerical model
and not an actual device. For example: subtracting the readouts RI

j that result from unpolarized light

from the readouts RV
j of vertically polarized light gives the components of the 2nd column of the M matrix:

Mj2 = RI
j −RV

j = V 2
j where V 2 is the Stokes basis vector for S2 in the readout vector space. In this way, the

matrix M can be determined at each wavelength by means of measuring the device’s response to incident
light.

By propagating uncorrelated errors from the different readouts, the device’s uncertainty in recovering the
Stokes vectors δSj given an uncertainty in the kth readouts δRk is given by

δSj =

√√√√
NR∑

k=1

|(M−1)jk|2 (δRk)2. (2)

If the uncertainty in the different readouts is equal, this expression can be simplified to

δSj = Λj δR where Λj =

√√√√
NR∑

k=1

|(M−1)jk|2; (3)

Λj is the device’s inherent polarization uncertainty, and δR is the common uncertainty of each readout. In
the previous section, figure 1 shows δSj at spectrum of wave numbers for a single QWISPP structure.

The QWISPP models used for all the results, including figure 1 in the previous section, share common
parameters except where noted. To find δSj , we always use δR = 0.000116 for reasons explained in section
3.1. All use perfectly conducting square gratings with a depth of 0.3 microns and a dielectric width of 0.7
times the period. The second grating that incident light will encounter always has a period of 3.13 microns.
The top reflective grating has a period of 2.89 microns for the results on the left side of figure 1. On the right
side of figure 1 and in section 3.4, the top reflective period is randomly varied following a normal distribution
with a mean of 3.13 µm and a standard deviation of 0.2 µm. The remaining two periods and angles are
fixed by the necessity to form a repeating unit cell. As shown in figure 2, the need for a repeating unit cell
constrains the number of modes to a finite, easy to model, set. The modeled quantum wells were formed



with GaAs / AlGaAs, and follow the algorithm given by Andersson and Lundqvist.15, 16 The separation
between successive gratings is 2.75 microns. The model was written in GNU C++ and scripts to run the
code repeatedly were written in MatLab. The source code or the executable is available upon request via
e-mail.

3. MODELING AN IMAGING FTIR COLUMN OF PIXELS

In section 3, we will first quantify the readout error, and we will define the assumptions and methodology
for modeling the QWISPP FTIR. Next, we will discuss the process of recovering the spectral-polarization
and associated uncertainty for the case of identical QWISPP pixels in an imaging FTIR and finally for the
case of QWISPP pixels with random structural variations in an imaging FTIR.

3.1. Readout error due to the electronics

The source of all uncertainties shown in this paper is readout error or equivalently error in reading the
photocurrent. We neglect a small error due to the modeling assumption that the polarization response
matrix is identical for the two impinging beams. Later in this subsection, we will show this error source
is negligible for interferograms formed from beams with an angle separation smaller than 0.03 degrees. In
short, we will group all error in the readouts as δR ≈ 0.000116 for impinging light of unit intensity. The
remainder of subsection 3.1 justifies these statements.

Using current quantum-well infrared photodetector (QWIP) cameras as a reference,17, 18 an FPA can be
fabricated with a noise-equivalent temperature difference NE∆T = 9 mK for signal at room temperature
T = 300 Kelvin near a wavelength of λo ≈ 10 µm. Assuming the photocurrent response is linear in the
intensity of the signal, we can find an expression for the signal to noise ratio R/δRe from the definition
of NE∆T , which is the largest temperature difference that cannot be distinguished from noise. With this
definition, the signal-to-noise ration is equivalent to

I(λo, To)

I(λo, To + NE∆T ) − I(λo, To)
=

R

δRe
≈ 6900 (4)

where I(λo, T ) is the black body intensity at wavelength λo and temperature T . We are measuring the
readouts in terms of the amount of the incident light absorbed. This means that in our model and in all our
plots in this paper, the readouts have units of intensity. Let’s assume the QWIP considered in references17, 18

absorbed around 80% of the incident light near resonance making R ≈ .8 when we scale the incident intensity
to S0 = 1. Substituting R, we find δRe = 0.000116. We will use this value for δRe as an estimate of the
detector noise for normalized Stokes parameters common to each of the four readouts on each QWISPP.

Another source of error in the model, which we neglect, is the assumption that the polarization response
matrix is identical for the two beams of light that form the interferogram. In an FTIR the light is split, and
the beam is sent through two paths that end up rejoining with slightly different wave-propagation directions.
The polarization response matrix M is a sensitive function of the incident angle of the light and is probably
a function of the relative phase between the two beams. Figure 3 shows the 16 components of M as a
function of the angle difference between the two beams of light forming the interferogram. We can model the
QWISPP FTIR without greatly expanding the QWISPP computer model if we consider only the case where
the angle difference is so small that it is smaller than the readout electronics error δRe. Figure 3 shows this
angle to be about θ = 0.03 degrees.

We are not loosing any generality by making this assumption. For larger angle separations, the QWISPP
will still have a polarization response matrix that can be inverted to recover the “net” polarization from the
two beams. The only complication is that this polarization response matrix cannot be calculated separately
from the calibration of the pixel from either of the two impinging beams and will depend on the relative
phase between these two beams. Because the result depends on the relative phase, the large angle difference
basically changes the polarization response matrix from pixel to pixel across the FPA. Therefore, the more
realistic case of larger angle differences, θ ≈ 1.5 degrees, will be mathematically identical to the case where
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Figure 3. On the left, we show the 16 components of the polarization response matrix M as a function of the angle
of incidence for the QWISPP design parameters described in subsection 2. If we assume the two beams that form the
interferogram have the same polarization response matrix M , then we have a worst case readout uncertainty δR

M

due to the error in the polarization response matrix shown on the right hand side.

the QWISPP pixels on the FPA vary in structure from pixel to pixel. We will study this case where QWISPP
structure varies across the FPA in subsection 3.4.

If we assume identical response from two angles of incidence, −θ/2 and θ/2, where θ is the angle difference
between the two beams, we will incur an error in the readouts δRM due to our choice of the polarization
response matrix. The error in the readouts

(δRM
j )2 =

4∑

k=1

(δMjk Sin
k )2 (5)

comes from the error propagation on equation 1 assuming no uncertainty in the incident signal. To simplify
the calculations, we assume the two beams, even though they arrive at different angles, give the same
polarization response matrix. This introduces an error in R by providing an uncertainty in Mjk

(δMjk)2 = (Mjk(θ/2) − Mjk(−θ/2))
2
. (6)

Plugging this uncertainty in M into equation 5, we fine the total error in the readouts is given by

(δRT
j )2 = (δRe

j)
2 +

4∑

k=1

(δMjk Sin
k )2. (7)

We used the values from figure 3 to calculate the corresponding worst case uncertainty for δRM as a function
of half the angle between the two beams θ/2. The results are also shown in figure 3. To achieve δRM errors
smaller than δRe = 0.000116, we will work with θ = 0.03 degrees.

Because we have chosen a small angle separation based on the above analysis, we now neglect any
contribution from δRM to δR. The conceptual conclusions of the paper do not depend on the exact value of
δR, when calibrating an actual device, one would not have any contribution to δR from δRM . The estimate
from δRe is sufficient to provide realistic results on which experimental efforts may be based.



3.2. Modeling an ideal FTIR

Our model of the QWISPP FTIR column of pixels makes a few simplifying assumptions. Essentially, we
assume an ideal FTIR. The model neglects all imperfections in the optics and the finite size of the pixels.
As explained in subsection 3.1, our model also assumes the polarization response matrix is identical for the
two incident beams.

We model the interferogram with the simplest possible model. An interferogram forms from light that
has been split and recombines at a slight angle. The wave vectors of these two beams are denoted by ~ka and
~kb. We set up our axis so that the interferogram is formed along the y axis, and ~ka and ~kb lie in the z-y
plane. The light can then be broken up into two modes,

Ex(~r) = Ea
x exp(i~ka · ~r) + Eb

x exp(i~kb · ~r) and Bx(~r) = Ba
x exp(i~ka · ~r) + Bb

x exp(i~kb · ~r) (8)

where ~r = (x, y, z) is the position vector and Ea
x , Eb

x, Ba
x, and Bb

x are complex magnitudes of the E and
B modes for the a and b beams which combine to form the interferogram. The two beams have an angle
difference of θ and the focal plane is at z = 0. The two wave vectors are ~ka = (0, k sin(θ/2), k cos(θ/2)) and
~kb = (0,−k sin(θ/2), k cos(θ/2)) where k = ω/c. Because both beams originated from a single beam, in an
ideal FTIR the coefficients will be related by Ea

x = Eb
x and Ba

x = Bb
x. We will assume the optics do not alter

the polarization; this error source could be calibrated out in a real device. A fixed phase shift between the
two paths will shift the center of the interferogram and can be absorbed into an appropriate choice of the
y = 0 coordinate.

The original incident polarimetric spectrum is denoted So
j (k) and represents the incident light that is

being spread over the column of pixels in the FTIR. The four Stokes parameters Sj are each formed by
quadratic combinations equation 8 like ExE∗

x, BxB∗

x and ExB∗

x. From this feature, we can deduce the
Stokes vector impinging on a pixel at position y is given by

Sy
j (k) =

So
j (k)

N
2 cos2

(
y k sin

θ

2

)
(9)

where k is the wave vector of the light under consideration.

Equation 9 shows this incident signal So
j (k) is spread across the N pixels, each pixel with 4 readouts.

We will assume that each pixel responds to the light incident on its center; this means we will not average
over the pixel size to get the more realistic response. Equation 9 is even in y; therefore S−y

j (k) = Sy
j (k), and

the light hitting the pixels at yo and −yo should be the same. This observation allows us to only sample
positions at y ≥ 0 without loss of information. N pixels will be able to recover N evenly spaced spectral
lines of information. We place pixels at N discrete points between 0 and L at yα = dx/2 + dx(α − 1) where
α is an index that runs from 1 through the number of pixels N and dx = L/N .

As explained in section 1, each pixel can potentially have a very different polarization response matrix.
The polarization response matrix Mα

ij(k) varies on the magnitude of the incident wave vector k = 2π/λ, and
the pixel under consideration α.

To find the response at any QWISPP on the FPA, we combine equation 9 with the polarization response
matrix at each pixel’s position Mα

ij(k) and integrate over k. The four responses of pixel α will be given by

Rα
i =

∫
dk

4∑

j=1

Mα
ij(k)

So
j (k)

N

(
1 + cos

(
yα 2 k sin

θ

2

) )
. (10)

Generically, this spatial pattern of responses is called the interferogram.

In the next two subsections, we will discuss two techniques to recover the incident polarization spectrum
So

j (k) given four readouts at N pixels Rα
i which describe the interferogram. The first case uses identical

QWISPP pixels across the FPA with the algorithm for recovering So
j (kn) based on a traditional Fourier

transform; and the second case uses randomly varying QWISPP pixels across the FPA with the algorithm
for recovering So

j (kn) based on linear algebra.
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Figure 4. The polarization response matrix for a QWISPP structure varies rapidly with the wave number of the
incident light.

3.3. Recovering spectral-polarization for identical QWISPP structure across the FPA

A slightly modified discrete Fourier transform can recover the spectral polarization in an imagining FTIR
spectrometer with an FPA where every QWISPP is identical. Because we are considering identical pixels,
we drop the α index on the polarization response matrix M for this subsection.

Just like a traditional FTIR, the modes are set by the angle difference between the two beams θ and the
size of the screen L. These N modes are given by

λn =
4 L sin(θ/2)

n
or kn =

n π

2 L sin(θ/2)
. (11)

The interferogram, which is even about y = 0, will be projected on an FPA extending from y = 0 to y = L.

An actual device will receive a continuum of wavelengths of incident light. The actual response of a
QWISPP will be the integral of the polarization response matrix multiplied by the incident polarization.
The polarization response matrix for a QWISPP structure varies rapidly with the wave number of the
incident light as shown in figure 4. The variation in Mij(k) with wave number is much faster than they
typical variation of Sj(k) with wave number. To accurately model the QWISPP response, the model needs
to numerically integrate with a sufficient sample spacing ∆k to capture the rapidly changing polarization
response matrix. This requires a data point every δλ ≈ 0.05 µm, or equivalently ∆k ≈ 10π cm−1. One
adjusts the sample spacing ∆k = π/(2L sin(θ/2)) by changing the angle separation between beams θ or by
adjusting the size L of the FPA on which the interferogram is formed.

For a discrete set of modes, the integral in equation 10 becomes a sum

Rα
i =

N∑

n=1

4∑

j=1

∆k Mij(kn)
So

j (kn)

N

(
1 + cos

(
yα 2 kn sin

θ

2

))
. (12)

Using the 4N readouts, we can recover at most 4 polarizations at N spectral lines. We use equation 12
with N spectral lines the starting point for discovering the algorithm to recover the spectral polarization.



Orthogonality of the modes and the inverse of the polarization response matrix provide the solution

So
j (kn) =

2

∆k

4∑

i=1

N∑

α=1

M−1
ji (kn)Rα

i cos (yα n π/L) . (13)

The uncertainty in the recovered Stokes vector (assuming all readouts have the same uncertainty) is given
by

δSo
j (kn) = δR

2

∆k

√√√√
4∑

i=1

N∑

α=1

(M−1
ji (kn))2 cos2 (yα n π/L) (14)

= δR Λj(kn)

√
2 N

∆k
. (15)

where Λj(kn) is the device’s inherent polarization uncertainty at a wave number kn as defined in equation 3.

An FTIR spectrometer designed with identical QWISPP pixels across the interferogram as calculated
from equation 12 will suffer the same regions of uncertainty as in a grating spectrometer. The uncertainty,
given in equation 12, at a particular wave number is proportional to the device’s uncertainty (equation 3) at
that same wave number. Therefore, the FTIR with identical QWISPP pixels cannot have lower uncertainty
in determining the spectral polarization that the QWISPP device would have in the case of a grating
spectrometer.

3.4. Recovering spectral-polarization for varying QWISPP structure across the FPA

There is one way to decrease the uncertainty in the recovered Stokes parameters. The key is to use a push-
broom FTIR configuration and fabricating an FPA where the QWISPP pixels vary randomly across the
focal plane as described in the next subsection. QWISPP pixels with different structures will have different
bands where they perform well. In a push-broom FTIR the incident light is jointly detected across a column
of pixels. Therefore, by using QWISPP pixels with randomly varying structures and push-broom FTIR, we
achieve a lower uncertainty in the spectral polarization.

To model this phenomena, we use the same starting point as the previous subsection (equations 11 and
12) except we return the superscript α on the polarization response matrix Mα

ij(kn) to enumerate which
pixel is being considered

Rα
i =

N∑

n=1

4∑

j=1

∆k Mα
ji(kn)

(
1 + cos

(
yα 2 kn sin

θ

2

))
So

j (kn)

N
. (16)

Again, Rα
i is again the ith readout at position yα. A discrete Fourier transform will not work for this case.

The readouts are formed from modes multiplied by a different polarization response matrix at every pixel
α; therefore, the modes are no longer orthogonal. We can still recover the spectral-polarization using simple
linear algebra at the price of some extra computer time.

Because we are using a matrix inverse and not orthogonality, one may be tempted to choose different
modes than those described in equation 11, e.g modes that are not evenly spaced. Although the matrix
can be inverted for different choices of modes, the error grows by many orders of magnitude for most other
choices. Even with this new algorithm, remaining with the modes described in equation 11 minimizes the
uncertainty in the recovered spectral polarization.

To make the simulation more realistic, we calculated the pixel response using fine sampling of the spectrum
with ∆k′ = ∆k/3 with 3N spectral lines. Although we calculate the response by summing the contribution
from 3N spectral lines, we use equation 16 with only N spectral lines as the starting point for discovering
the algorithm to recover the input spectral polarization.



FTIR Simulation with Varying QWISPP Pixels Across the FPA
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Figure 5. We modeled an FTIR with varying QWISPP pixels across the FPA. In the left column of plots, we show
a hypothetical polarization spectrum. In the center column, we show the four readouts for a column of pixels in the
FTIR. In the right column, we show the recovered polarization spectrum with the associated uncertainty.



With a sufficient sampling of modes kn, we solve this for So
j (kn) by creating a 4N × 4N matrix T

T(α,i),(n,j) =
∆k

N
Mα

ij(kn) (1 + cos(yα n π/L)) (17)

where (α, i) and (n, j) enumerate the 4N × 4N components. Using this matrix, we can rewrite equation 16
as

Rα
i =

4∑

j=1

N∑

n=1

T(α,i),(n,j)S
o
j (kn). (18)

The original Stokes parameters can be recovered by inverting the matrix T

So
j (kn) =

4∑

i=1

N∑

α=1

T−1
(n,j),(α,i)R

α
i . (19)

A typical device will not have a response at every spectral line kn. For small n, the mode kn given by
equation 11 will have a wavelength much longer than the cutoff wavelength of most detector materials. This
will cause the matrix T to be rectangular; in which case the pseudoinverse T̃−1 = (T T T )−1T T can be used
in place of a typical matrix inverse to recover the spectral polarization. Again, using the error propagation
formula, the uncertainty in the recovered Stokes parameters is given by

δSo
j (kn) = δR

√√√√
4∑

i=1

N∑

α=1

(
T−1

(n,j),(α,i)

)2

. (20)

In figure 5, we modeled an FTIR using a different QWISPP structure at each pixel of the FPA. The
variation was introduced by changing the period of the top reflective grating following a normal distribution
centered at 3.13 microns and with a standard deviation of 0.2 microns. In figure 5, the left column is
the incident polarization spectrum for the atmospheric window between 830 − 1250 cm−1 (equivalent to
8 − 12 µm). The center column shows the interferogram for each of the four readouts calculated using
equation 18.

We model the readout response shown in this figure using 3N spectral lines. If one does not choose a
sufficiently dense set of modes kn, recovering the spectrum becomes impossible because the actual response
of a pixel, which is the integral over k of the incident Stokes vector multiplied by the pixel’s polarization
response matrix, will deviate considerably from the modeled response from a finite sampling of modes. Our
choice of ∆k places 85 spectral lines in the plotted region. Our choice of 85 spectral lines, which corresponds
to N = 256, is a dense enough sampling because our model was able to recover the incident spectrum even
with the actual response formed by 3N spectral lines.

Notice R4, which is nearest the incident light, has a generally stronger response than R1 which is near the
reflective top grating of the QWISPP. In the right column of figures, the polarization spectrum is recovered
using equation 19. The error bars shown on these plots are calculated from equation 20 using equation 4 for
δR.

4. DISCUSSION AND CONCLUSIONS

The FTIR configuration shows a considerable improvement in the uncertainty of the recovered spectrum
when the FPA is composed of a random sampling of QWISPP structures. To compare the improvement in
uncertainty, we plot the uncertainty in the normalized Stokes parameters in figure 1.

The average uncertainty in recovering a Stokes vector improves by about 100× by using a random
assortment of QWISPP pixels. For the cases we modeled, an FPA of identical QWISPPs in a grating
spectrometer has an average uncertainty of 0.2416 in a normalized Stokes parameter. This uncertainty is



shown in left side of figure 1. For the FPA with randomly varying QWISPP structures the average uncertainty
drops to 0.0022.

In addition to lower average uncertainty, we also have about a 15× improvement in the uniformity of
this uncertainty across the spectral range under consideration. The standard deviation of the uncertainty
is 0.1075 for the normalized Stokes parameters in the grating spectrometer pictured in left side of figure 1.
The standard deviation drops to 0.0072 in the case of randomly varying QWISPP pixels used with an FTIR.

Several benefits follow from this result. The first benefit is relaxing the manufacturing specifications for
the device. The University of New Mexico, Center for High Technology Materials has a contract with the Air
Force Office of Scientific Research to develop a technique to manufacture the device. Because of this result,
the imperfections in manufacturing the QWISPP structure will manifest as performance improvements when
used in an FTIR imager configuration.

A variation of the described QWISPP FTIR presents another benefit. An FPA with only two readouts
per QWISPP pixel, but double the number of pixels, also enables full spectro-polarimetric detection. Even
QWIPs with simple linear gratings at random orientations and quadruple the number of pixels will be able
to detect all polarization except for S3. In other words, other structures can be modeled and spectral-
polarization recovered with the algorithm described in subsection 3.4. These devices can be built today
using QWIPs with linear gratings in combination with a push-broom FTIR. These design variations sacrifice
the size and weight benefits of the QWISPP in favor of designs that are easy to manufacture while retaining
the benefit of near-perfect coregistration.

In this paper, we have discussed the implementation of spectral-polarimetric detection using pixels with
polarization sensitivity in an FTIR configuration. We have shown that variation in the QWISPP structure
can actually improve the uncertainty in recovering the polarimetric spectrum. Although the QWISPP is
still a challenge to fabricate with today’s technology, we have observed that the algorithms presented here
can be used to easily make FTIR spectral-polarimetric detectors with current QWIP technology.
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