
FLUIDS, FLOWS AND COMPLEXITY

PROBLEM SET 2

Julia Yeomans

Comments and corrections to julia.yeomans@physics.ox.ac.uk please.

1. Rankine vortex

(a) A rotating impeller of radius a spins up a steady, two-dimensional vortex in a large
container of water, in which the flow consists of a core of uniform angular velocity Ω for
r < a and irrotational flow with velocity given by uθ = Ωa2/r for r > a. Determine the
profile of vorticity ω(r) across the vortex and sketch the variations of uθ(r) and ω(r). You
may neglect viscous damping.

(b) Use the Navier-Stokes equations in (cylindrical polars) to show that the difference
in pressure between the centre of the vortex core and r → ∞ is −ρΩ2a2. Can you use
Bernoulli’s theorem for this calculation?

(c) The water layer is bounded above by a free surface. Obtain an expression for the
height h(r) of the free surface across the vortex, and sketch the variation of h with r.
Determine the change in the level of the free surface between the vortex core and large
r for an impeller of radius 5 cm located at the bottom of the tank and rotating at 120
revolutions per minute. The container is 1.5 m deep. What is the maximum rotation rate
of the impeller if the upper surface of the water is not to expose the impeller to the air?

2. The Bernoulli function

(a) Starting from the Navier-Stokes equation, show that for incompressible flow

∂u

∂t
+∇H = u× ω + ν∇2u, (1)

where H = |u|2/2 + p/ρ is the Bernoulli function and ω = ∇× u is the vorticity. Hence
determine the conditions under which H is invariant along streamlines. Under what con-
ditions is H constant everywhere?

(b) Form a vorticity equation from (1), and hence show that vorticity is conserved along
streamlines if the flow is steady, two-dimensional, inviscid and incompressible.

(c) How high can water rise up one’s arm hanging in the river from a punt?

[ Assume the following vector identities:

(F.∇)F =
1

2
∇|F|2 − F× (∇× F)

∇× (∇2F) = ∇2(∇× F) ]

3. Circulation and Lift

Consider an irrotational, inviscid, incompressible two-dimensional flow with clockwise swirl
around a cylinder of radius a. The flow is defined by the velocity potential,

ϕ = U

(
r +

a2

r

)
cos θ −Aθ, r > a.



(a) Find expressions for the velocity components perpendicular and parallel to the walls
of the cylinder.
(b) Using Bernoulli’s equation, show that the pressure on the cylinder is

p = constant− 2ρU2 sin2 θ − 2ρUA

a
sin θ.

(c) Show that the lift force on the cylinder is

L = −ρUΓC

where ΓC is the circulation around a circle lying just outside the cylinder.

4. Surface waves

(a) Small-amplitude waves are generated at the surface of a shallow channel filled with
water to depth h. For two-dimensional, inviscid, irrotational flow in the water layer, the
boundary conditions satisfied are

∂η

∂t
=
∂φ

∂y
and

∂φ

∂t
+ gη = 0 at the surface y = h, and

∂φ

∂y
= 0 at the bottom of the channel at y = 0,

where η is the vertical displacement of the surface and φ the velocity potential in the water
layer. Give a physical justification for these boundary conditions.

(b) Given that φ satisfies Laplace’s equation in x and y, show that the waves satisfy the
dispersion relation

ω2 = gk tanh kh. (1)

(c) Show that, for wavelengths for which kh is small but finite, this dispersion relation
may be approximated by

ω ' c0

(
k − k3h2

6

)
,

where c0 = (gh)1/2.

(d) The Korteweg–de Vries equation

∂η

∂t
+ c0

∂η

∂x
+

(
3c0
2h

)
η
∂η

∂x
+
c0h

2

6

∂3η

∂x3
= 0

is a model equation for weakly dispersive, nonlinear waves on the surface of a channel
of water of depth h and surface elevation η. Without detailed mathematical derivation,
give a brief physical justification of the origin of each term and its effect on the resultant
dispersion relation and shape of the solution.

(e) A possible (soliton) solution to this equation is of the form

η =
2hV

c0
sech2

[
1

2

{
V

σ

}1/2

{x− (c0 + V )t}
]
,

where σ = c0h
2/6 and V is a parameter. Sketch the form of this solution, clearly labelling

its amplitude and extent in x, and indicating its propagation speed. How do the prop-
erties of this solution differ from those of small-amplitude linear waves which satisfy the
dispersion relation (1)?

(f) Scott Russell first observed the formation of such a soliton wave on the surface of a canal
in 1834 when a barge stopped abruptly, and determined its amplitude a and propagation
speed C to be a ≈ 0.3 m and C ≈ 3.5 m s−1. Estimate the depth h of the canal.



5. Stokes drag

The flow and pressure field for Stokes flow (Re=0) past a sphere of radius a, in spherical
polar co-ordinates with z along the direction of the incoming flow, are

ur = u0 cos θ

(
1− 3a

2r
+

a3

2r3

)
,

uθ = −u0 sin θ

(
1− 3a

4r
− a3

4r3

)
,

p = p0 −
3ηu0a

2r2
cos θ.

(a) Sketch the flow field.
(b) Confirm that the solution obeys (i) the Stokes equations (ii) the correct boundary
conditions.
(c) The components of the viscous stress tensor in spherical polar co-ordinates are:

σrr = −p+ 2η
∂ur
∂r

,

σθθ = −p+ 2η

(
1

r

∂uθ
∂θ

+
ur
r

)
,

σϕϕ = −p+ 2η

(
1

r sin θ

∂uϕ
∂ϕ

+
ur
r

+
uθ cot θ

r

)
,

σrθ = η

(
r
∂

∂r

(
uθ
r

)
+

1

r

∂ur
∂θ

)
,

σrϕ = η

(
1

r sin θ

∂ur
∂ϕ

+ r
∂

∂r

(
uϕ
r

))
,

σθϕ = η

(
sin θ

r

∂

∂θ

(
uϕ

sin θ

)
+

1

r sin θ

∂uθ
∂ϕ

)
.

Calculate the viscous stress tensor at r = a and hence identify the stress (force per unit
area) acting on the sphere.
(d) By integrating over the sphere derive Stokes law for the drag D on the sphere:

D = 6πηau0.

(e) Assuming Stokes law, calculate the terminal velocity of a raindrop of radius 1mm falling
in air. Discuss whether the use of Stokes law is in fact valid in this case.

6. Thin film approximation

A circular disk of radius a initially sticks to a flat ceiling at z = 0 by means of a thin film
of viscous, incompressible liquid of dynamic viscosity η and thickness h(t)� a. Effects of
surface tension may be neglected.

(a) Given that h and W (t) = dh/dt are very small, explain briefly why the radial velocity
ur in the thin film obeys the approximate equation in cylindrical polar coordinates

∂p

∂r
= η

∂2ur
∂z2

.



(b) Show that p ≈ p(r, t), and that ur is given in this approximation by

ur =
1

2η

∂p

∂r
z(z + h).

(c) By integrating the incompressibility condition downwards in z from z = 0 to z = −h,
show that

W = − h3

12η

1

r

∂

∂r

(
r
∂p

∂r

)
.

(d) Hence show that the pressure distribution in the fluid film above the disk is given by

p− p0 =
3ηW

h3
(a2 − r2),

where p0 is atmospheric pressure.
(e) Show that the total downwards force on the disk needed to pull it away from the ceiling
at speed W is

F =
3π

2

ηa4W

h3
.

(f) Spiderman, of mass 50 kg, wishes to hang suspended from the ceiling by being attached
to a circular disk of radius 10 cm on the underside of a thin film of a fluid of dynamic
viscosity 300 kg m−1 s−1. The film has an initial thickness 1 mm, and initially fills the
entire space between the disk and the ceiling. The volume of the film V remains constant
at V = πa20h0, where a0 and h0 are the initial radius and thickness of the film. Estimate
the length of time spiderman can remain attached to the ceiling. Comment on the likely
accuracy of your estimate for a real fluid film (a real man?).


