
FLUIDS, FLOWS AND COMPLEXITY

PROBLEM SET 1

Julia Yeomans

Comments and corrections to julia.yeomans@physics.ox.ac.uk please.

Thank you to Professor David Marshall who gave this course in previous years. I have used
some of his problems and lecture notes. A few problems are from the web sites of Oxford Maths
and Cambridge Maths.

1. Streamlines and flows

For (A) a 2D straining flow u = (αx,−αy) and (B) a simple shear flow u = (γy, 0) where
α and γ are constants:
(a) Find the equation for a general streamline of the flow.
(b) At t = 0 dye is introduced to mark the curve x2 + y2 = a2. Find the equation for this
material fluid curve for t > 0 and sketch how the curve evolves with time.
(c) Does the area within the curve change in time, and why?
(d) Which of the two flows stretches the curve faster at long times?

2. Stream function and velocity potential

(a) Is the motion incompressible for the flows given by the following velocity potentials:
(i) φ = C(x2 + y2) (ii) φ = C(x2 − y2)?
If so, determine the corresponding stream functions.

(b) Is the motion irrotational for the flows given by the following stream functions:
(iii) ψ = C(x2 + y2) (iv) ψ = C(x2 − y2)?
If so, determine the corresponding velocity potentials.

(iii) Sketch the streamlines for all cases (a)– (d) and the lines of constant φ where possible.

3. Velocity gradient tensor

Show that a simple shear flow u = (αy, 0, 0) can be decomposed into a sum of a rotation
and a straining flow (i) pictorially (ii) in terms of the velocity gradient tensor.

4. Solving Navier-Stokes: flow down an inclined plane

Consider a steady, two-dimensional, incompressible, viscous flow down an inclined plane
under the influence of gravity. Define the axes as shown in the diagram, and assume that
the velocity u depends only on y.

(a) What are the boundary conditions for u at y = 0? Using incompressibility show that
the y-component of the velocity is zero throughout the flow.
(b) Write down the x- and y-components of the Navier-Stokes equation.
(c) From the y-component show that the pressure

p = p0 + ρg(d− y) cos θ
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4. (a) A flat plate of width L is placed at a right angle to the flow in a wind tunnel, in
which the upstream wind speed is U . By scaling the momentum equation and neglecting
the gravitational acceleration1, show that the character of the solution depends only on
the Reynolds number, Re. Further show that the magnitude of the pressure variations
is

∆p ∼ ρνU

L
in the limit Re ≪ 1, and

∆p ∼ ρU2 in the limit Re ≫ 1,

where U is the upstream speed and L is width of the plate.

(b) In a wind tunnel, vortices are observed to be shed behind the plate at a frequency
of 0.5 s−1. The same plate is now placed into a water channel. Calculate the flow
rate required, as a multiple of that in the wind tunnel, to produce dynamically similar
behaviour, and calculate the frequency of the vortex shedding.

5. Consider steady, two-dimensional incompressible viscous flow down an inclined plane
under the influence of gravity. Define the axes as shown in the diagram, and assume
that the velocity u depends only on y.
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(a) What are the boundary conditions for u and v at y = 0? Using incompressibility,
show that v = 0 throughout the flow. Write down the x- and y-components of the
Navier-Stokes equation, and from the y-component show that the pressure is of the form
p(x, y) = −ρgy cos θ +F (x). Assuming that the pressure at the free surface y = d equals
the constant atmospheric pressure p0, further show that

p = p0 + ρg(d − y) cos θ.

(b) From the x-component of the Navier-Stokes equation, together with an appropriate
boundary condition at y = 0 and the zero tangential stress condition µdu/dy = 0 at the
free surface y = d, show that

u =
g

2ν
y(2d − y) sin θ.

Show that the volume flux, per unit distance into the page, is gd3 sin θ/(3ν).

1Formally we can redefine p as the absolute pressure less the hydrostatic pressure, −ρgz.
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** 6. (a) Starting from the equations of motion for a compressible fluid with ν = 0,
derive the mechanical energy conservation equation:

∂

∂t

(
ρ
u · u

2
+ ρgz

)
+ ∇ · (ρuB) = p∇ · u,

where
B =

u · u
2

+ gz +
p

ρ

is the Bernoulli potential (which we will encounter again in lectures 5/6).

(b) Using the first law of thermodynamics and your answer to Q2(a), and neglecting
sources and molecular diffusion of heat, show that the right-hand side of the mechanical
energy equation is related to the rate of change of the specific internal energy, e, of a
fluid parcel:

ρ
De

Dt
= −p∇ · u.

(c) Using the above results, derive a conservation equation in flux form for the total,
mechanical plus internal, energy. Confirm that within a volume of fluid, V , bounded by
solid walls, and neglecting viscosity and sources of heat, the total energy is conserved:

∂

∂t

∫∫

V

∫
ρ

(u · u
2

+ gz + e
)

dV = 0.
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where p0 is the pressure at the free surface y = d.
(d) From the x-component, using the appropriate boundary conditions at y = 0 and the
zero tangential stress condition ν dux/dy = 0 at the free surface y = d show that

ux =
g

2ν
y(2d− y) sin θ.

(e) Show that the volume flux per unit distance along z is gd3 sin θ/(3ν).

5. Reynolds number

Estimate the magnitude of the Reynolds number for:

(a) flow past the wing of a jumbo jet,
(b) a human swimmer,
(c) a thick layer of treacle draining off a spoon,
(d) a bacterium swimming in water.

Take the kinematic viscosity ν to be 10−6m2s−1 for water, 1.5 × 10−5m2s−1 for air and
10−1m2s−1 for treacle.

6. Dynamical similarity and dimensionless variables

Determine the conditions for the dynamical similarity of steady incompressible flow of an
electrically conducting fluid in a magnetic field, governed by the equations

∇ · u = 0, (1)

∇ ·B = 0, (2)

u · ∇u = −1

ρ
∇p+

1

ρµ
(∇∧B) ∧B + ν∇2u, (3)

u · ∇B = B · ∇u +
1

σµ
∇2B. (4)

You will need to define a length scale L, a velocity scale U and a magnetic field scale B0.
Notation: u=velocity, B=magnetic field, p=pressure, ρ=density, ν=kinematic viscosity,
µ=magnetic permeability, σ=electrical conductivity.

Comment on the physical meaning of the dimensionless control parameters.
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7. More dynamical similarity

(a) A flat plate of width L is placed at a right angle to the flow in a wind tunnel, in which
the upstream wind speed is U .
Show that the expected scaling of the pressure variations is

(i) ∆p ∼ ρνU

L
in the limit Re� 1,

(ii) ∆p ∼ ρU2 in the limit Re� 1.

(b) In the wind tunnel vortices are shed behind the plate at a frequency of 0.5 s−1.
The same plate is now placed into a water channel. Calculate the flow rate required,
as a multiple of that in the wind tunnel, to produce dynamically similar behaviour, and
calculate the frequency of the vortex shedding.

8. Vorticity

(a) What is meant by the vorticity of a fluid flow? Illustrate your answer by discussing:
(i) a rectilinear flow that has vorticity eg simple shear (again) u = (αy, 0, 0).
(ii) a rotating flow that does not have vorticity eg ur = 0, uθ = A/r (in plane polar co-
ordinates).
(b) What is the vorticity of a flow in rigid body motion with angular velocity Ω?
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