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Introduction

I this talk will be physical rather than mathematical: how can
logCFTs arise in physics?

I viewpoint will be to regard logCFTs as limits of ordinary (albeit
irrational) CFTs

I most of the discussion not restricted to two dimensions, although
some detailed examples will be

I two main examples:
I random systems using the n→ 0 ‘replica trick’
I self-avoiding walks as the n→ 0 limit of the O(n) model

I both these have partition function Z = 1 (c = 0), and one of the
interesting questions is how t, the logarithmic partner of the
stress tensor T , emerges in this picture

I I will not address logCFTs with c 6= 0 in this talk



LogCFTs in general

I a logCFT is a scale-invariant QFT (Θ = Tµµ = 0) where the
generator Ŝ of scale transformations cannot be completely
diagonalized, but only brought to Jordan form

I e.g. for a 2× 2 cell

Ŝ
(

C
D

)
=

(
∆ 0
1 ∆

)(
C
D

)
I this has the consequence that (for scalar fields)

〈D(r1)D(r2)〉 ∼ −2α log |r1 − r2|+ O(1)

|r1 − r2|2∆

〈C(r1)D(r2)〉 ∼ α

|r1 − r2|2∆

〈C(r1)C(r2)〉 = 0

where α depends on how D is normalised.



Quenched random systems and replicas
I classical stat mech system, energy E[{φ}, {h}]: {φ(r)} are

fluctuating degrees of freedom; {h(r)} are quenched random
fields drawn from some distribution, e.g.

E[{φ}, {h}] = Epure[{φ}] + λ

∫
h(r)Φ(r)ddr

where Φ is some local field and h(r) = 0,
h(r)h(r′) = δ(d)(r − r′).

I we want to compute quenched averages of correlators of local
fields, e.g.

〈Φ(r1)Φ(r2)〉 =

(
Trφ Φ(r1)Φ(r2)e−E[{φ},{h}]

Trφ e−E[{φ},{h}]

)

I this is difficult because of the {h}-dependence in the
denominator Z[{h}]



Two ways around this
I (a) find some other degrees of freedom {ψ} such that

Trψ e−E[{ψ},{h}] = Z[{h}]−1, then

〈Φ(r1)Φ(r2)〉 = Trφ,ψ Φ(r1)Φ(r2)e−E[{φ},{h}]−E[{ψ},{h}]

The quenched average is now easy. In some cases this leads to a
supersymmetry between {φ} and {ψ}.

I (b) consider n copies of the fields {φa}, a = 1, . . . , n, and note
that

〈Φ(r1)Φ(r2)〉 =

(
Trφa Φ1(r1)Φ1(r2)e−

∑n
a=1 E[{φa},{h}]

Z[{h}]n

)

for all integer n ≥ 1.
I if this can be continued to n = 0, we can set the denominator

= 1, the quenched average is again easy, but now the replicas
interact.



Replica group theory

I the symmetry group is Sn

I for λ = 0, this acts trivially on the non-interacting replicas
I for λ 6= 0, assume that under the RG the theory flows to a CFT,

which, for n 6= 0, is generically non-logarithmic
I eigenstates of D̂ transform according to irreducible

representations of Sn

I in particular, the multiplet (Φ1, . . . ,Φn) decomposes into

Φ ≡
n∑

a=1

Φn

Φ̃a ≡ Φa − (1/n)

n∑
a=1

Φa



Operator product expansions

I in the non-interacting theory we have the OPE (suppressing
indices)

Φa(r1) · Φb(r2) = δab|r12|−2∆pure

(
1 + · · ·+

∆pure

cpure
rd

12Ta(r1) + · · ·
)

I the coefficient of T is fixed by global conformal invariance and is
valid in any number of dimensions, if c is defined as the
coefficient of the 2-point function 〈T(r1)T(r2)〉 ∼ c/r2d

12
(suppressing indices).



These are equivalent to

Φ̃a · Φ̃a = (1− 1
n

)|r12|−2∆pure

(
1 +

∆pure

ncpure
rd

12T +
∆pure

c
rd

12T̃a + · · ·
)

Φ · Φ = n|r12|−2∆pure

(
1 +

∆pure

ncpure
rd

12T + · · ·
)

where T and T̃a are the corresponding irreducible linear combinations
of the Ta.
In the interacting theory these deform to

Φ̃a · Φ̃a = (1− 1
n

)|r12|−2∆̃(n)

(
1 +

∆̃(n)

c(n)
rd

12T + B(n)rd+δ(n)
12 T̃a + · · ·

)

Φ · Φ = n|r12|−2∆(n)

(
1 +

∆(n)

c(n)
rd

12T + · · ·
)

where (∆(n), ∆̃(n), d, d + δ(n)) are the dimensions of (Φ, Φ̃a,T, T̃a)
respectively and c(n) is the central charge of the interacting theory.



If we look at the 2-point functions we have

〈Φ1(r1)Φ1(r2)〉 = 〈Φ̃1Φ̃1〉+
1
n2 〈ΦΦ〉 = (1− 1

n
)

1

|r12|2∆̃(n)
+

1
n

1
|r12|2∆(n)

〈Φ1(r1)Φ(r2)〉 =
1
n
〈ΦΦ〉 =

1
|r12|2∆(n)

〈Φ(r1)Φ(r2)〉 =
n

|r12|2∆(n)

But

lim
n→0
〈Φ1(r1)Φ1(r2)〉 = 〈Φ(r1)〉〈Φ(r2)〉

lim
n→0
〈Φ1(r1)Φ(r2)〉 = 〈Φ(r1)Φ(r2)〉 − 〈Φ(r1)〉〈Φ(r2)〉

and these had better be finite!
I as n→ 0, ∆̃(n)−∆(n)→ 0, and

〈Φ1(r1)Φ1(r2)〉 ∼ −2α log |r12|
|r12|2∆(0)

where α = ∆̃′(0)−∆′(0)

I (Φ1,Φ) are an example of a logarithmic pair.



The ‘c→ 0 catastrophe’

Φ̃a · Φ̃a = (1− 1
n

)|r12|−2∆̃(n)

(
1 +

∆̃(n)

c(n)
rd

12T + B(n)rd+δ(n)
12 T̃a + · · ·

)

Φ · Φ = n|r12|−2∆(n)

(
1 +

∆(n)

c(n)
rd

12T + · · ·
)

I since limn→0 c(n) = 0, there is an apparent problem with the
coefficient of T . This can be resolved in several different ways:

a) the normalization of the physical fields vanishes as c→ 0: this is
what happens for Φ · Φ above (and for many examples in
percolation): no logs

b) the scaling dimension ∆→ 0: this happens for the Kac (1, 2)
operator in 2d percolation whose 4-pt function gives the crossing
formula: no logs

c) T collides with another operator as c→ 0, and the leading
singularities cancel: this is what happens for Φ̃a · Φ̃a above, as
long as δ(n)→ 0 and B(n) ∼ 2∆(n)/c(n). In this case we are
left with a term ∝ δ′(0)rd

12 log |r12|.



In this case T1 and T form a logarithmic pair: in 2d

〈T1(z1)T1(z2)〉 = 〈T(z1)〉〈T(z2)〉 =
2c′(0)δ′(0) log(z12z̄12)

2z4
12

〈T1(z1)T(z2)〉 = 〈T(z1)T(z2)〉 − 〈T(z1)〉〈T(z2)〉 =
c′(0)

2z4
12

〈T(z1)T(z2)〉 = 0

In 2d logCFT this is usually written, with t ∝ T1,

〈t(z1)t(z2)〉 = −b log(z12z̄12)

z4
12

〈t(z1)T(z2)〉 =
b

2z4
12

so that b = −c′(0)/2δ′(0).
I however in this case t is not a holomorphic operator, because T̃a

has dimensions (2 + δ(n), δ(n))
I b is defined within the logCFT at c = 0, but the physical

quantities c′(0) and δ′(0) are not



Example II. The O(n→ 0) model and self-avoiding walks
I the O(n) field theory with integer n is based on a multiplet of

fields (φ1, . . . , φn) and action

S =

∫ [ n∑
a=1

(∂φa)2 + m2
0

n∑
a=1

φ2
a + λ0

( n∑
a=1

φ2
a
)2

]
ddr

I on a lattice, the free theory represents a sum over loops,
weighted by e−m2

0(length) and with a factor n for each loop. In this
way the model already makes sense for non-integer n.

I the interaction λ0 provides a repulsion between different loops
and different parts of the same loop: as λ0 →∞ we get an
ensemble of self-avoiding loops. For m2

0 large, these are all
small, at a critical value the typical size diverges and we have a
CFT in the scaling limit.

I if we compute 〈φa(r1)φa(r2)〉 we get the weighted number of
open walks from r1 to r2: at n = 0 these are SAWs.



Smirnov’s observable (d = 2)

I Smirnov instead considered the quantity 〈ψa(z0)ψa(z)〉 in which
the open walks from z0 to z are also weighted by e−isθz0z where
θz0z is the winding angle

I at the critical point and for the correct value of s (= h2,1(n) in the
Kac table!), this is a discretely holomorphic function of z, i.e.
obeys a discrete version of the Cauchy-Riemann relations

I if this continues to hold in the scaling limit, then
a) this can be used to prove that the curves are SLEκ
b) we get a holomorphic conformal field (parafermion) ψa(z) with

dimensions (h2,1(n), 0)



Consider now the OPE

ψa(z1) · ψb(z2) = z−2h2,1(n)
12

(
δab +

2h2,1(n)

c(n)
z2

12δabT(z1) + · · ·
)

I as n→ 0 there is a potential catastrophe, which is avoided in this
case by the collision of T with another operator

I since ψa is a Kac (2, 1) operator, this can only be in the list
allowed by the fusion rules, and the only candidate is a Kac
(3, 1) operator, since limn→0 h3,1(n) = 2

I this can be identified physically as the deformation of the
operator Tab ∝ (∂zφa)(∂zφb) in the free theory: the trace
deforms to T and the traceless part to T̃ab

I we can then identify t ∝ T11, and, since we know both c(n) and
h3,1(n), we can compute b = −c′(0)/2h′3,1(0) = 5

6
I the correlators 〈tt〉 and 〈tT〉 can be physically interpreted in

terms of SA loops



Summary

I we can understand the appearance of logarithmic behaviour in
some CFTs which are limits of regular CFTs

I this involves the presence of a global symmetry under which the
operators transform irreducibly in general: however these
representations become singular in the limit: logarithms then
appear due to collisions of irreducible operators and
cancellations in the OPE

I comparison with a non-interacting limit allows the physical
identification of these operators

I the c→ 0 catastrophe may be avoided in various ways: when
this happens due to the collision of another operator with T there
is a logarithmic partner t (which however is not necessarily
holomorphic in 2d)

I the parameter b = −1
2(dc/d∆) where ∆ is the dimension of the

operator which collides with T



I there are important physical quantities (like c′(0)) which are not
in the logCFT

I most of this still holds in general dimension d


