# Another Percolation Formula 

John Cardy<br>University of Oxford

$$
\text { Banff - May } 2005
$$

Joint work with Adam Gamsa

## The Problem



- critical site percolation on triangular lattice in upper half-plane $\mathbf{H}$
- all sites on boundary are white, except:
- origin is black and is conditioned to be connected to infinity
- denote boundaries of white clusters connected to $\mathbf{R}$ - and $\mathbf{R}+$ by $\gamma_{-}$and $\gamma_{+}$
- what are the scaling limits of the probabilities that a given point $\zeta \in \mathbf{H}$ lies to the left of $\gamma_{-}$, to the right of $\gamma_{+}$, or in between?


## Relation to quantum Hall physics



- conformally map half-plane to strip
- electron in strong magnetic field in random potential $V(r)$ approximately follows level lines $V(r)=E_{F} \sim$ boundaries of percolation clusters
- $V \rightarrow+\infty$ at edges
- electrons follow the boundary of cluster connected to the edges
- mean current density $\propto(d / d y) \operatorname{Pr}(y$ lies above upper curve $)$


## Strategy

- single curve described by SLE $_{\kappa=6}$
- $\operatorname{Pr}$ (point lies to L of curve) satisfies a simple ODE [Schramm]
- conformal field theory (CFT) interpretation
- generalisation to $>1$ curve
- results
- 'reverse engineer' to get SLE description


## Single curve - Schramm's formula



- what is the probability that $\zeta=u+i v$ lies to the left of the curve?
- $\gamma$ described by SLE $_{\kappa}$ with $\kappa=6$ :

$$
d g_{t}(z) / d t=2 /\left(g_{t}(z)-a_{t}\right) \quad \text { with } \quad a_{t}=a_{0}+\sqrt{\kappa} B_{t}
$$

- $\operatorname{Pr}\left(\zeta\right.$ lies to L of SLE started at $\left.a_{0}\right)=$ $\operatorname{Pr}\left(g_{t}(\zeta)\right.$ lies to L of SLE started at $\left.a_{t}\right)$

SO

$$
\left(\frac{\kappa}{2} \frac{\partial^{2}}{\partial a_{0}^{2}}+\operatorname{Re}\left[\frac{2}{\zeta-a_{0}} \frac{\partial}{\partial \zeta}\right]\right) P\left(\zeta ; a_{0}\right)=0
$$

- $P$ depends only on $t=\left(u-a_{0}\right) / v \Rightarrow 2$ nd order ODE
- boundary conditions $P \rightarrow 0$ as $t \rightarrow+\infty, P \rightarrow 1$ as $t \rightarrow-\infty$
- solution

$$
P_{\text {left }}=\frac{1}{2}+\frac{\Gamma\left(\frac{4}{\kappa}\right)}{\sqrt{\pi} \Gamma\left(\frac{8-\kappa}{2 \kappa}\right)} t_{2} F_{1}\left(\frac{1}{2}, \frac{4}{\kappa} ; \frac{3}{2} ;-t^{2}\right)
$$

## Relation to conformal field theory

$$
P\left(\zeta ; a_{0}\right)=\frac{\left\langle\mathcal{O}(\zeta) \phi_{2}\left(a_{0}\right) \phi_{2}(\infty)\right\rangle_{C F T}}{\left\langle\phi_{2}\left(a_{0}\right) \phi_{2}(\infty)\right\rangle_{C F T}}
$$

where

- $\phi_{2}(x)$ conditions the partition function on a curve starting at boundary point $x$
- $\mathcal{O}(\zeta)=\mathbf{1}(\zeta$ to L of curve $)$
- under $z \rightarrow z+2 \epsilon /\left(z-a_{0}\right)$

$$
\phi_{2}\left(a_{0}\right) \rightarrow \phi_{2}\left(a_{0}\right)+2 \epsilon L_{-2} \phi_{2}\left(a_{0}\right)
$$

- $\phi_{2}$ is conjectured to have the special property that

$$
L_{-2} \phi_{2}\left(a_{0}\right)=(\kappa / 4)\left(\partial / \partial a_{0}\right)^{2} \phi_{2}\left(a_{0}\right)
$$

- same differential equation


## 2-curve CFT calculation



- numerator $N$ satisfies 2 equations:

$$
\begin{aligned}
& \left(\frac{\kappa}{2} \frac{\partial^{2}}{\partial a_{1}^{2}}+\frac{2}{a_{2}-a_{1}} \frac{\partial}{\partial a_{2}}-\frac{2 h_{2}}{\left(a_{2}-a_{1}\right)^{2}}+\operatorname{Re}\left[\frac{2}{\zeta-a_{1}} \frac{\partial}{\partial \zeta}\right]\right) N=0 \\
& \left(\frac{\kappa}{2} \frac{\partial^{2}}{\partial a_{2}^{2}}+\frac{2}{a_{1}-a_{2}} \frac{\partial}{\partial a_{1}}-\frac{2 h_{2}}{\left(a_{1}-a_{2}\right)^{2}}+\operatorname{Re}\left[\frac{2}{\zeta-a_{2}} \frac{\partial}{\partial \zeta}\right]\right) N=0
\end{aligned}
$$

where $h_{2}=(6-\kappa) / 2 \kappa$. (Denominator satisfies similar equations without last terms.)

## Fusion rules

- as $\delta=a_{2}-a_{1} \rightarrow 0$

$$
\phi_{2}\left(a_{1}\right) \cdot \phi_{2}\left(a_{2}\right)=\delta^{1-6 / \kappa} \phi_{1}\left(a_{1}\right)+\delta^{2 / \kappa} \phi_{3}\left(a_{1}\right)
$$

- any solution of these equations has the form

$$
\delta^{1-6 / \kappa}\left(F_{1}\left(a_{1}, \zeta\right)+O(\delta)\right)+\delta^{2 / \kappa}\left(F_{3}\left(a_{1}, \zeta\right)+O(\delta)\right)
$$

where $F_{1}$ satisfies a 1st order PDE and $F_{3}$ a 3rd order PDE.

- conditioning curves to go to $\infty$ picks out $F_{3}$
- since $P$ depends only on $t=u / v$ this leads to a 3rd order ODE
- one solution is $P=$ const. $\Rightarrow 2$ nd order Riemann equation for $d P / d t$
- general solution

$$
\left(1+t^{2}\right)^{1-\frac{8}{\kappa}}\left(A_{2} F_{1}\left(\frac{1}{2}+\frac{4}{\kappa}, 1-\frac{4}{\kappa} ; \frac{1}{2} ;-t^{2}\right)+B t_{2} F_{1}\left(1+\frac{4}{\kappa}, \frac{3}{2}-\frac{4}{\kappa} ; \frac{3}{2} ;-t^{2}\right)\right)
$$

## Boundary conditions



- as $t \rightarrow+\infty, P_{\text {left }} \sim t^{-x_{4}}$ where $x_{4}=(24 / \kappa)-2$ is the boundary 4-leg exponent $\Rightarrow$ fixes $B / A$
- as $t \rightarrow-\infty, P_{\text {left }} \rightarrow 1 \Rightarrow$ fixes $A$
- $P_{\text {right }}(t)=P_{\text {left }}(-t)$
- $P_{\text {middle }}(t)=1-P_{\text {left }}(t)-P_{\text {right }}(t)$


## Results



Prob(Point between curves) with $k=8 / 3$


Prob(Point to the left of curves) with $k=6$


Prob(Point between curves) with $k=6$


## Extremal cases

- $\kappa=0$

- $\kappa=8$ (recall $P_{\text {left }}=\frac{1}{2}$ for 1 curve - space-filling)
- let $u / v=\tan \phi$

$$
\begin{aligned}
P_{\text {left }} & =\frac{1}{4}(1-2 \phi / \pi) \\
P_{\text {middle }} & =\frac{1}{2} \\
P_{\text {right }} & =\frac{1}{4}(1+2 \phi / \pi)
\end{aligned}
$$

## Reverse engineering $\operatorname{SLE}(\kappa, \rho)$

- first CFT equation corresponds to assuming that Loewner driving term satisfies

$$
\begin{aligned}
d a_{1} & =\sqrt{\kappa} d B_{t}+\frac{2 d t}{a_{1}-a_{2}} \\
d a_{2} & =\frac{2 d t}{a_{2}-a_{1}}
\end{aligned}
$$

- $\operatorname{SLE}(\kappa, 2)$
- this generates the measure on curve \#1 conditioned on the existence of curve \#2
- similarly with $1 \leftrightarrow 2$
- follows from scaling and commutativity, but less trivial for $>2$ curves


## Multiple SLE

- but we could also take any linear combination $\sum_{j} b_{j} \mathcal{D}_{j} P=\ldots$ of the CFT equations
- corresponds to a Loewner map satisfying

$$
\dot{g}_{t}(z)=\sum_{j} \frac{2 b_{j}}{g_{t}(z)-a_{j t}}
$$

where

$$
d a_{j}=\sqrt{b_{j} \kappa} d B_{t}^{(j)}+\sum_{k \neq j} \frac{2\left(b_{j}+b_{k}\right) d t}{a_{j}-a_{k}}
$$

- corresponds to growing curves at different speeds
- if CFT correctly describes continuum limit of lattice models then different choices should give same joint measure on curves
- when the $b_{j}$ are all equal this is Dyson's Brownian motion


## Summary

- we have derived formulae for the expected values of simple observables of the conjectured scaling limit of 2 curves in lattice models like percolation
- generalization to $N$ curves possible but requires solving an ODE of order $N-1$
- CFT suggests that the measure on a single curve is given by SLE $(\kappa, 2)$, and that joint measure on curves is given by 'multiple SLE'

