Another Percolation Formula

John Cardy

University of Oxford

Banff - May 2005

Joint work with Adam Gamsa

The Problem

- critical site percolation on triangular lattice in upper half-plane H
- all sites on boundary are white, except:
- origin is black and is conditioned to be connected to infinity
- denote boundaries of white clusters connected to \mathbf{R} and \mathbf{R} + by γ_{-} and γ_{+}
- what are the scaling limits of the probabilities that a given point $\zeta \in \mathbf{H}$ lies to the left of γ_- , to the right of γ_+ , or in between?

Relation to quantum Hall physics

- conformally map half-plane to strip
- electron in strong magnetic field in random potential V(r) approximately follows level lines $V(r) = E_F \sim$ boundaries of percolation clusters
- ▶ $V \to +\infty$ at edges
- electrons follow the boundary of cluster connected to the edges
- mean current density $\propto (d/dy)Pr(y \text{ lies above upper curve})$

Strategy

- ▶ single curve described by $SLE_{\kappa=6}$
- Pr(point lies to L of curve) satisfies a simple ODE [Schramm]
- ► conformal field theory (CFT) interpretation
- generalisation to > 1 curve
- results
- 'reverse engineer' to get SLE description

Single curve – Schramm's formula

what is the probability that ζ = u + iv lies to the left of the curve?
 γ described by SLE_κ with κ = 6:

 $dg_t(z)/dt = 2/(g_t(z) - a_t)$ with $a_t = a_0 + \sqrt{\kappa}B_t$

 Pr(ζ lies to L of SLE started at a₀) = Pr(g_t(ζ) lies to L of SLE started at a_t)

so

$$\left(\frac{\kappa}{2}\frac{\partial^2}{\partial a_0^2} + \operatorname{Re}\left[\frac{2}{\zeta - a_0}\frac{\partial}{\partial \zeta}\right]\right)P(\zeta; a_0) = 0$$

- *P* depends only on $t = (u a_0)/v \Rightarrow 2$ nd order ODE
- ▶ boundary conditions $P \rightarrow 0$ as $t \rightarrow +\infty$, $P \rightarrow 1$ as $t \rightarrow -\infty$

solution

$$P_{\text{left}} = \frac{1}{2} + \frac{\Gamma(\frac{4}{\kappa})}{\sqrt{\pi}\Gamma(\frac{8-\kappa}{2\kappa})} t_2 F_1(\frac{1}{2}, \frac{4}{\kappa}; \frac{3}{2}; -t^2)$$

Relation to conformal field theory

$$P(\zeta; a_0) = \frac{\langle \mathcal{O}(\zeta)\phi_2(a_0)\phi_2(\infty)\rangle_{CFT}}{\langle \phi_2(a_0)\phi_2(\infty)\rangle_{CFT}}$$

where

- ▶ φ₂(x) conditions the partition function on a curve starting at boundary point x
- $\mathcal{O}(\zeta) = \mathbf{1}(\zeta \text{ to L of curve})$
- under $z \to z + 2\epsilon/(z a_0)$

$$\phi_2(a_0) \rightarrow \phi_2(a_0) + 2\epsilon L_{-2}\phi_2(a_0)$$

• ϕ_2 is conjectured to have the special property that $L_{-2}\phi_2(a_0) = (\kappa/4)(\partial/\partial a_0)^2\phi_2(a_0)$

same differential equation

2-curve CFT calculation

numerator N satisfies 2 equations:

$$\left(\frac{\kappa}{2} \frac{\partial^2}{\partial a_1^2} + \frac{2}{a_2 - a_1} \frac{\partial}{\partial a_2} - \frac{2h_2}{(a_2 - a_1)^2} + \operatorname{Re}\left[\frac{2}{\zeta - a_1} \frac{\partial}{\partial \zeta}\right] \right) N = 0$$

$$\left(\frac{\kappa}{2} \frac{\partial^2}{\partial a_2^2} + \frac{2}{a_1 - a_2} \frac{\partial}{\partial a_1} - \frac{2h_2}{(a_1 - a_2)^2} + \operatorname{Re}\left[\frac{2}{\zeta - a_2} \frac{\partial}{\partial \zeta}\right] \right) N = 0$$

where $h_2 = (6 - \kappa)/2\kappa$. (Denominator satisfies similar equations without last terms.)

Fusion rules

• as
$$\delta = a_2 - a_1 \rightarrow 0$$

 $\phi_2(a_1) \cdot \phi_2(a_2) = \delta^{1-6/\kappa} \phi_1(a_1) + \delta^{2/\kappa} \phi_3(a_1)$

any solution of these equations has the form

 $\delta^{1-6/\kappa} (F_1(a_1,\zeta) + O(\delta)) + \delta^{2/\kappa} (F_3(a_1,\zeta) + O(\delta))$

where F_1 satisfies a 1st order PDE and F_3 a 3rd order PDE.

- conditioning curves to go to ∞ picks out F_3
- since *P* depends only on t = u/v this leads to a 3rd order ODE
- one solution is $P = \text{const.} \Rightarrow 2\text{nd}$ order Riemann equation for $\frac{dP}{dt}$
- general solution

 $(1+t^2)^{1-\frac{8}{\kappa}} \left(A_2 F_1(\frac{1}{2}+\frac{4}{\kappa},1-\frac{4}{\kappa};\frac{1}{2};-t^2) + B t_2 F_1(1+\frac{4}{\kappa},\frac{3}{2}-\frac{4}{\kappa};\frac{3}{2};-t^2) \right)$

Boundary conditions

- ► as $t \to +\infty$, $P_{\text{left}} \sim t^{-x_4}$ where $x_4 = (24/\kappa) 2$ is the boundary 4-leg exponent \Rightarrow fixes B/A
- as $t \to -\infty$, $P_{\text{left}} \to 1 \Rightarrow \text{fixes } A$
- $\blacktriangleright P_{\rm right}(t) = P_{\rm left}(-t)$
- $\blacktriangleright P_{\text{middle}}(t) = 1 P_{\text{left}}(t) P_{\text{right}}(t)$

Results

Prob(Point to the left of curves) with k=6

Extremal cases

- $\kappa = 8$ (recall $P_{\text{left}} = \frac{1}{2}$ for 1 curve – space-filling)
- $\blacktriangleright \quad \text{let } u/v = \tan \phi$
- $P_{\text{left}} = \frac{1}{4}(1 2\phi/\pi)$ $P_{\text{middle}} = \frac{1}{2}$ $P_{\text{right}} = \frac{1}{4}(1 + 2\phi/\pi)$

Reverse engineering SLE(κ, ρ)

 first CFT equation corresponds to assuming that Loewner driving term satisfies

$$da_1 = \sqrt{\kappa} dB_t + \frac{2dt}{a_1 - a_2}$$
$$da_2 = \frac{2dt}{a_2 - a_1}$$

► SLE(*κ*, 2)

- this generates the measure on curve #1 conditioned on the existence of curve #2
- similarly with $1 \leftrightarrow 2$
- follows from scaling and commutativity, but less trivial for > 2 curves

Multiple SLE

- ► but we could also take any linear combination $\sum_j b_j D_j P = \dots$ of the CFT equations
- corresponds to a Loewner map satisfying

$$\dot{g}_t(z) = \sum_j \frac{2b_j}{g_t(z) - a_{jt}}$$

where

$$da_j = \sqrt{b_j \kappa} \, dB_t^{(j)} + \sum_{k \neq j} \frac{2(b_j + b_k)dt}{a_j - a_k}$$

- corresponds to growing curves at different speeds
- if CFT correctly describes continuum limit of lattice models then different choices should give same joint measure on curves
- when the b_i are all equal this is Dyson's Brownian motion

Summary

- we have derived formulae for the expected values of simple observables of the conjectured scaling limit of 2 curves in lattice models like percolation
- generalization to *N* curves possible but requires solving an ODE of order N 1
- CFT suggests that the measure on a single curve is given by SLE(κ, 2), and that joint measure on curves is given by 'multiple SLE'