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Abstract

These notes are intended to supplement the lecture course ‘Field Theory in
Condensed Matter’ and are not intended for wider distribution. Any errors or
obvious omissions should be communicated to me at j.cardy1@physics.ox.ac.uk.
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1 A Brief History of Quantum Field Theory

Quantum field theory (QFT) is a subject which has evolved considerably
over the years and continues to do so. From its beginnings in elementary
particle physics it has found applications in many other branches of science,
in particular condensed matter physics but also as far afield as biology
and economics. In this course we shall be adopting an approach (the
path integral) which was not the original one, but became popular, even
essential, with new advances in the 1970s. However, to set this in its
context, it is useful to have some historical perspective on the development
of the subject (dates are only rough).

• 19th C. Maxwell’s equations – a classical field theory for electromag-
netism.

• 1900: Planck hypothesises the photon as the quantum of radiation.
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• 1920s/30s: development of particle quantum mechanics: the same
rules when applied to the Maxwell field predict photons. However
relativistic particle quantum mechanics has problems (negative energy
states.)

• 1930s/40s: realisation that relativity + quantum mechanics, in which
particles can be created and destroyed, needs a many-particle descrip-
tion where the particles are the quanta of a quantised classical field
theory, in analogy with photons.

• 1940s: formulation of the calculation rules for quantum electrodynam-
ics (QED) – Feynman diagrams; the formulation of the path integral
approach.

• 1950s: the understanding of how to deal with the divergences of Feyn-
man diagrams through renormalisation; QFT methods begin to be
applied to other many-body systems eg in condensed matter.

• 1960s: QFT languishes – how can it apply to weak + strong interac-
tions?

• 1970s: renormalisation of non-Abelian gauge theories, the renormal-
isation group (RG) and asymptotic freedom; the formulation of the
Standard Model

• 1970s: further development of path integral + RG methods: applica-
tions to critical behaviour.

• 1970s: non-perturbative methods, lattice gauge theory.

• 1980s: string theory + quantum gravity, conformal field theory (CFT);
the realisation that all quantum field theories are only effective over
some range of length and energy scales, and those used in particle
physics are no more fundamental than in condensed matter.

• 1990s/2000s: holography and strong coupling results for gauge field
theories; many applications of CFT in condensed matter physics.

Where does this course fit in?
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In 16 lectures, we cannot go very far, or treat the subject in much depth.
In addition this course is aimed at a wide range of students, from exper-
imental particle physicists, through high energy theorists, to condensed
matter physicists (with maybe a few theoretical chemists, quantum com-
puting types and mathematicians thrown in). Therefore all I can hope to
do is to give you some of the basic ideas, illustrated in their most simple
contexts. The hope is to take you all from the Feynman path integral,
through a solid grounding in Feynman diagrams, to renormalisation and
the RG. From there hopefully you will have enough background to un-
derstand Feynman diagrams and their uses in particle physics, and have
the basis for understanding gauge theories as well as applications of field
theory and RG methods in condensed matter physics.

2 The Feynman path integral in particle quantum

mechanics

In this lecture we will recall the Feynman path integral for a system with
a single degree of freedom, in preparation for the field theory case of many
degrees of freedom.

Consider a non-relativistic particle of unit mass moving in one dimension.
The coordinate operator is q̂, and the momentum operator is p̂. (I’ll be
careful to distinguish operators and c-numbers.) Of course [q̂, p̂] = ih̄.
We denote the eigenstates of q̂ by |q′〉, thus q̂|q′〉 = q′|q′〉, and 〈q′|q′′〉 =
δ(q′ − q′′).
Suppose the hamiltonian has the form Ĥ = 1

2 p̂
2 + V (q̂) (we can consider

more general forms – see later.) The classical action corresponding to this
is

S[q] =
∫ tf
ti

[
1
2 q̇

2 − V (q(t))
]
dt

where q(t) is a possible classical trajectory, or path. According to Hamil-
ton’s principle, the actual classical path is the one which extremises S –
this gives Lagrange’s equations.

The quantum amplitude for the particle to be at qf at time tf given that
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it was at qi at time ti is

M = 〈qf |e−iĤ(tf−ti)/h̄|qi〉 .

According to Feynman, this amplitude is equivalently given by the path
integral

I =
∫

[dq] eiS[q]/h̄

which is a integral over all functions (or paths) q(t) which satisfy q(ti) = qi,
q(tf) = qf . Obviously this needs to be better defined, but we will try to
make sense of it as we go along.

In order to understand why this might be true, first split the interval (ti, tf)
into smaller pieces

(tf , tn−1, . . . , tj+1, tj, . . . , t1, ti)

with tj+1 − tj = ∆t. Our matrix element can then be written

M = 〈qf |

N factors︷ ︸︸ ︷
e−iĤ∆t/h̄ . . . e−iĤ∆t/h̄ |qi〉

(Note that we could equally well have considered a time-dependent hamil-
tonian, in which case each factor would be different.) Now insert a complete
set of eigenstates of q̂ between each factor, eg at time-slice tj insert∫ ∞

−∞
dq(tj)|q(tj)〉〈q(tj)|

so that
M =

∏
j

∫
dq(tj)〈q(tj+1)|e−iĤ∆t/h̄|q(tj)〉

On the other hand, we can think of doing the path integral
∫
[dq] by first

fixing the values {q(tj)} at times {tj} (see Fig. 1) and doing the integrals
over the intermediate points on the path, and then doing the integral over
the {q(tj)}. Thus

I =
∏
j

∫
dq(tj)

∫
[dq(t)] e

(i/h̄)
∫ tj+1
tj

( 1
2 q̇

2−V (q(t)))dt
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Figure 1: We can imagine doing the path integral by first fixing the values of q(t) at times
(t1, t2, . . .).

Thus we can prove that M = I in general if we can show that

〈q(tj+1)|e−iĤ∆t/h̄|q(tj)〉 =
∫

[dq(t)] e
(i/h̄)

∫ tj+1
tj

( 1
2 q̇

2−V (q(t)))dt

for an arbitrarily short time interval ∆t. First consider the case when
V = 0. The path integral is

∫
[dq]e

(i/2h̄)
∫ tj+1
tj

q̇2dt

Let q(t) = qc(t) + δq(t) where qc(t) interpolates linearly between q(tj) and
q(tj+1), that is

qc(t) = q(tj) + (∆t)−1(t− tj)(q(tj+1)− q(tj))

and δq(tj+1) = δq(tj) = 0. Then

∫ tj+1

tj
q̇2dt = (∆t)

q(tj+1)− q(tj)
∆t

2

+
∫

(δq̇)2dt

and ∫
[dq]e

(i/2h̄)
∫ tj+1
tj

q̇2dt
= ei(q(tj+1)−q(tj))

2
/2h̄∆t

∫
[d(δq)]e(i/2h̄)

∫
(δq̇)2dt

The second factor depends on ∆t but not q(tj+1) or q(tj), and can be
absorbed into the definition, or normalisation, of the functional integral.
The first factor we recognise as the spreading of a wave packet initially
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localised at q(tj) over the time interval ∆t. This is given by usual quantum
mechanics as

〈q(tj+1)|e−ip̂
2∆t/2h̄|q(tj)〉

(and this can be checked explicitly using the Schrödinger equation.)

Now we argue, for V 6= 0, that if ∆t is small the spreading of the wave
packet is small, and therefore we can approximate V (q) by (say) V (q(tj)).
Thus, as ∆t→ 0,

∫
[dq]e

(i/h̄)
∫ tj+1
tj

( 1
2 q̇

2−V (q(t)))dt ∼ 〈q(tj+1)|e−i(∆t/h̄)( 1
2 q̂

2+V (q̂))|q(tj)〉

Putting all the pieces together, an integrating over the {q(tj)}, we obtain
the result we want.

As well as being very useful for all sorts of computations, the path integral
also provides an intuitive way of thinking about classical mechanics as a
limit of quantum mechanics. As h̄ → 0 in the path integral

∫
[dq]eiS[q]/h̄,

the important paths are those corresponding to stationary phase, where
δS[q]/δq = 0. Other paths giving rapidly oscillating contributions and
therefore are suppressed. This is just Hamilton’s principle. In the semi-
classical limit, the important paths will be those close to the classical one.
Periodic classical orbits will carry a complex phase which will in general
average to zero over many orbits. However if the action of a single orbit
is 2πh̄× integer, the phase factor is unity and therefore such orbits will
dominate the path integral. This is the Bohr-Sommerfeld quantisation
condition.

The path integral is not restricted to hamiltonians of the above form, but is
more general. An important case is when Ĥ(â, â†) is expressed in terms of
annihilation and creation operators â and â† satisfying [â, â†] = 1. In this
case, the path integral is obtained by replacing these by complex-valued
functions a(t) and a∗(t):∫

[da][da∗]e(i/h̄)
∫

(ih̄a∗∂ta−H(a,a∗))dt

This is called a coherent state path integral. Similar versions exist for
hamiltonians depending on quantum spins.
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2.1 Imaginary time path integrals and statistical mechanics

Sometimes it is useful to consider matrix elements of the form

M = 〈qf |e−Ĥ(τf−τi)/h̄|qi〉 , (1)

that is, without the i. An analogous argument to the above shows that
this is given by the path integral∫

[dq]e−SE [q]/h̄ (2)

where
SE[q] =

∫ τf
τi

(1
2 q̇

2 + V (q(τ)))dτ

This is called the ‘imaginary time’ path integral: if we formally let t = −iτ
in the previous result, we get this answer. For reasons that will become
apparent in the field theory generalisation, SE is usually referred to as the
euclidean action. Note that the relative sign of the kinetic and potential
terms changes between S and SE.

One application of this idea is to quantum statistical mechanics. The
canonical partition function in general is

Z = Tr e−βĤ

where β = 1/kBT . For the model under consideration the trace can be
written

Z =
∫
dqi〈qi|e−βĤ |qi〉

where the matrix element is of the form (1) with τf − τi = βh̄. Thus Z
is also given by the imaginary time path integral (2) over periodic paths
satisfying q(τi + βh̄) = q(τi).

Another application is to the computation of the ground state energy E0.
If we insert a complete set of eigenstates of Ĥ into (1) in the limit τf−τi ≡
T → ∞, the leading term has the form ∼ e−E0T . On the other hand,
in (2) this is given by paths q(τ) which minimise SE[q]. Typically they
must satisfy q̇(τ) → 0 as τ → ±∞. In most cases these have q̇ = 0
throughout, but other cases are more interesting. In particular this leads
to an understanding of quantum-mechanical tunnelling.
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The imaginary time path integral (2) may also be though of as a partition
function in classical statistical mechanics. Suppose that we treat τ as a
spatial coordinate, and q(τ) as the transverse displacement of a stretched
elastic string tethered at the points τi and τf . In addition a force, described
by an external potential V (q), acts on the string. The euclidean action

SE[q] =
∫

(1
2m(dq/dτ)2 + V (q(τ)))dτ

(where we have restored the particle mass m in the original problem) can
now be thought of as the potential energy of the string, the first term rep-
resenting the bending energy where m is the string tension. The partition
function of the string in classical statistical mechanics is

Z =
∫

[dq][dp]e−(
∫

1
2ρp

2dτ+SE [q])/kBT

where p now means the momentum density and
∫ 1

2ρp
2dτ is the kinetic

energy, with ρ being the string’s mass per unit length. The integral over
p just gives a constant, as in a classical gas, so comparing with (2) we see
that the imaginary time path integral actually corresponds to a classical
partition function at temperature kBT = h̄. This is the simplest example
of one of the most powerful ideas of theoretical physics:

⇒Quantum mechanics (in imaginary time) ≡ classical statistical
mechanics in one higher spatial dimension⇐

3 Path integrals in field theory

A field theory is a system whose degrees of freedom are distributed through-
out space. Since the continuous version of this is a little difficult to grasp
initially, consider a discrete regular lattice in D-dimensional space whose
sites are labelled by (x1,x2,x3, . . .). At each site there is a degree of free-
dom. Instead of q̂ and p̂ we use φ̂ and π̂. Thus

q̂ → (φ̂(x1), φ̂(x2), . . . )

p̂ → (π̂(x1), π̂(x2), . . . )
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satisfying the canonical commutation relations

[φ̂(xj), π̂(xj′)] = ih̄δjj′

The simplest form of the hamiltonian, generalising our single degree of
freedom example, is

Ĥ =
∑
j

ĥ(π̂(xj), φ̂(xj)) + 1
2J

∑
(jj′)

(φ̂(xj)− φ̂(xj′))
2

where the last term couples the degrees of freedom on neighbouring sites.
We can take ĥ to have the same form as before,

ĥ(π̂(xj), φ̂(xj)) = 1
2 π̂(xj)

2 + V (φ̂(xj))

In the path integral version the operators φ̂(xj) are replaced by c-number
variables φ(xj, t): ∫ ∏

j

[dφ(xj, t)] e
(i/h̄)S[{φ(xj ,t)}]

where

S =
∫ ∑

j

(1
2φ̇(xj, t)

2 − V (φ(xj, t)))− 1
2J

∑
(jj′)

(φ(xj, t)− φ(xj′, t))
2

 dt
This is the action for a lattice field theory.

However we are interested in the continuum limit, as the lattice spacing
a → 0. The naive continuum limit is obtained by replacing sums over
lattice sites by integrals: ∑

j

→
∫ dDx

aD

and making a gradient (Taylor) expansion of finite differences:

∑
(jj′)

(φ(xj, )− φ̂(xj′, t))
2 →

∫ dDx

aD
a2(∇φ(x, t))2

After rescaling φ→ J−1/2a(D−2)/2φ (and also t), the action becomes

S =
∫
dtdDx

(
1
2φ̇

2 − 1
2(∇φ)2 − V (φ)

)
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This is the action for a classical field theory. The quantum theory is given
by the path integral over fields φ(x, t)∫

[dφ(x, t)] eiS[φ]/h̄

However, this begs the question of whether this has a meaningful limit as
a→ 0. The naive answer is no, and making sense of this limit requires the
understanding of renormalisation.

3.1 Field theory action functionals

The example that we discussed above has several nice properties:

• it is local : this means that S can be written as
∫ L(φ, φ̇,∇φ)dtdDx

where the lagrangian density depends on the local value of the field and
its derivatives. Moreover (more technically) it depends on derivatives
only up to second order. It can be shown that higher order derivatives
in t lead to violations of causality.

• it is relativistically invariant (with c = 1): in 4-vector (or D+1-vector)
notation L can be written

L = 1
2(∂0φ)2 − 1

2

∑
i

(∂iφ)2 − V (φ) = 1
2(∂µφ)(∂µφ)− V (φ)

so that if φ transforms as a Lorentz scalar, L is Lorentz invariant.
This is of course a requirement for a field theory describing relativistic
particles. Another example is

L = 1
4FµνF

µν

where Fµν = ∂µAν − ∂νAµ and Aµ is a Lorentz vector. This is the
lagrangian for the electromagnetic field. However in condensed matter
physics applications, relativistic invariance is not necessary (although
it sometimes emerges anyway, with c replaced by the Fermi velocity
or the speed of sound.) Note also that the imaginary time version of
the action for our scalar field theory is

SE =
∫ 1

2

d∑
i=1

(∂iφ)2 + V (φ)

 ddx
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where d = D + 1 and ddx = dDxdτ . That is, τ plays the same role
as a spatial coordinate and the theory is invariant under rotations in
d-dimensional euclidean space. For this reason the imaginary time
versions are called euclidean quantum field theories.

• L should be invariant under any internal symmetries of the theory. If
this is φ → −φ, for example, then V should be an even function. In
the case of electromagnetism, the symmetry is local gauge invariance.

• the theory be renormalisable (see later – although non-renormalisable
theories also play a role nowadays.)

3.2 The generating functional

One difference between single particle quantum mechanics and quantum
field theory is that we are not usually interested in transition amplitudes
between eigenstates |φ(x)〉 of the field itself, as the field itself is not phys-
ically measurable. In fact, since we usually consider the limit of infinite
space, on relativistic grounds we should also consider infinite times. Thus
the only meaningful path integral would seem to be∫

[dφ]e(i/h̄)
∫∞
−∞ dt

∫
LdDx (3)

which is just a number. In fact, if we consider the euclidean version of this,∫
[dφ]e−(1/h̄)

∫∞
−∞ dτ

∫
LdDx (4)

and relate this to a matrix element between eigenstates |n〉 of Ĥ, we get

lim
τf−τi→∞

∑
n
e−En(τf−τi) 〈n|n〉 ∼ e−E0(τf−τi) 〈0|0〉

Thus we see that (4) (and, by careful definition through analytic contin-
uation, see later, (3)) just tells about the vacuum → vacuum amplitude,
and is thus not very interesting (at least in flat space.)

In order to get any interesting physics we have to ‘tickle’ the vacuum, by
adding sources which can make things happen. The simplest and most
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useful way of doing this is to add a source coupling locally to the field
itself, that is change the action to

S → S +
∫
J(x)φ(x)ddx

The vacuum amplitude is now a functional of this source function J(x):

Z[J ] =
∫

[dφ]eiS+i
∫
J(x)φ(x)ddx

We are now using x = (x, t) to represent a point in Minkowski space (or
(x, τ) in euclidean space), and we have started using units where h̄ = 1,
both standard conventions in QFT. It is straightforward to put the right
factors back in when we calculate a physical quantity.

Since the i makes this rather ill-defined, we shall, for the time being, de-
velop the theory in the euclidean version

Z[J ] =
∫

[dφ]e−S+
∫
J(x)φ(x)ddx

Interesting physical quantities are found by taking functional derivatives
of Z[J ] with respect to J . For example

1

Z[0]

δZ[J ]

δJ(x1)

∣∣∣∣∣∣
J=0

=
1

Z[0]

∫
[dφ]φ(x1) e

−S[φ]

By analogy with statistical mechanics in d dimensions, this can be thought
of as an expectation value 〈φ(x1)〉. Similarly

1

Z[0]

δ2Z[J ]

δJ(x1)δJ(x2)

∣∣∣∣∣∣
J=0

=
1

Z[0]

∫
[dφ]φ(x1)φ(x2) e

−S[φ] = 〈φ(x1)φ(x2)〉 ,

a correlation function.

But what do these mean in the operator formulation? To see this imagine
inserting a complete set of eigenstates. Then as τi →∞ and τf → +∞,∫

[dφ]φ(x1) e
−S[φ] ∼ e−E0(τf−τ1) e−E0(τ1−τi) 〈0|φ̂(x1)|0〉

and the first two factors get cancelled by Z[0]. Similarly the two-point
function is

〈φ(x1)φ(x2)〉 = 〈0|φ̂(x1)e
−(Ĥ−E0)(τ1−τ2)φ̂(x2)|0〉
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where we have emphasised that φ̂, in the Schrödinger picture, depends on
the spatial coordinates x but not τ . However if we go to the Heisenberg
picture and define

φ̂(x) = e−(Ĥ−E0)τ φ̂(x) e(Ĥ−E0)τ

the rhs becomes
〈0|φ̂(x1)φ̂(x2)|0〉 .

However this is correct only if τ1 > τ2. If the inequality were reversed we
would have had to write the factors in the reverse order. Thus we conclude
that

1

Z[0]

δ2Z[J ]

δJ(x1)δJ(x2)

∣∣∣∣∣∣
J=0

= 〈φ(x1)φ(x2)〉 = 〈0|T
[
φ̂(x1)φ̂(x2)

]
|0〉

where T arranges the operators in order of decreasing τ .

⇒Functional derivatives of Z[J ] give vacuum expectation values of
time-ordered products of field operators⇐

This result continues to hold when we go back to real time t. Fortunately
it is precisely these vacuum expectation values of time-ordered products
which arise when we do scattering theory.

In field theory, the correlation functions are also called Green functions
(as we’ll see, for a free field theory they are Green functions of differential
operators), or simply the N -point functions

G(N)(x1, . . . , xN) = 〈φ(x1) . . . φ(xN)〉 =
1

Z[0]

δNZ[J ]

δJ(x1) . . . δJ(xN)

∣∣∣∣∣∣
J=0

Equivalently

Z[J ]

Z[0]
=

∞∑
N=0

1

N !

∫
ddx1 . . .

∫
ddxN G

(N)(x1, . . . , xN)J(x1) . . . J(xN)

Z[J ] is called the generating function for the N -point functions.

It is also useful to define

W [J ] ≡ logZ[J ] ,
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which is analogous to the free energy in statistical mechanics. We expect,
by analogy, that W [0] is proportional to the total space-time volume V T ,
and that, if the sources J are localised to a finite region of space-time, that
W [J ] −W [0] is finite in the limit V T → ∞. Thus functional derivatives
of W wrt J should also be finite. These give what are called the connected
correlation functions 〈φ(x1) . . . φ(xN)〉c or G(N)(x1, . . . , xN)c. The reason
for this will become apparent when we write them in terms of Feynman
diagrams. For example

δ2W [J ]

δJ(x1)δJ(x2)

∣∣∣∣∣∣
J=0

= 〈φ(x1)φ(x2)〉c = 〈φ(x1)φ(x2)〉 − 〈φ(x1)〉〈φ(x2)〉

W [J ] is the generating function for the connected N -point functions.

3.3 The propagator in free field theory

The only path integrals we can actually do (except in certain esoteric theo-
ries with supersymmetry) are gaussian, that is when the action S is at most
quadratic in the field φ. However this is an important case, corresponding
to a free field theory. As usual, we consider the euclidean case first.

Z0[J ] =
∫

[dφ] e−
∫

[ 12 (∂φ)2+ 1
2m

2φ2]ddx+
∫
J(x)φ(x)ddx

(So far m is just a parameter, but it will turn out that in Minkowski space
this theory describes free relativistic particles of mass m.) The first term
can be integrated by parts to give 1

2φ(−∂2)φ.

Define Fourier transforms:

φ̃(p) =
∫
ddx e−ip·x φ(x)

φ(x) =
∫ ddp

(2π)d
eip·x φ̃(p)

and similarly for J̃(p) and J(x). (Note that in field theory it is conventional
to put the factors of 2π as above.)

The negative of the expression in the exponential is then∫ ddp

(2π)d
[

1
2φ̃(p)(p2 +m2)φ̃(−p)− J̃(p)φ̃(−p)

]
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Completing the square on the expression in square brackets:

1

2

[
φ̃(p)− 1

p2 +m2
J̃(p)

]
(p2 +m2)

[
φ̃(−p)− 1

p2 +m2
J̃(−p)

]

−1

2
J̃(p)

1

p2 +m2
J̃(−p)

Now the functional integral
∫
[dφ(x)] can equally well be carried out over∫

[dφ̃(p)]. Shifting the integration variable φ̃(p) = φ̃(p)
′
+ (p2 + m2)−1J̃(p)

gives

Z0[J ] =
∫

[dφ̃′] e−
1
2

∫
(ddp/(2π)d)φ̃(p)

′
(p2+m2)φ̃(−p)

′
+ 1

2

∫
(ddp/(2π)d)J̃(p)(p2+m2)−1J̃(−p)

The first term in the exponential gives a factor independent of J , so

Z0[J ] = Z0[0] e
1
2

∫
(ddp/(2π)d)J̃(p)(p2+m2)−1J̃(−p)

Going back to coordinate space

Z0[J ] = Z0[0] e
1
2

∫
ddx′

∫
ddx′′J(x′)∆(x′−x′′)J(x′′) (5)

where

∆(x′ − x′′) ≡
∫ ddp

(2π)d
eip·(x

′−x′′)

p2 +m2
.

With this result in hand we can now compute correlation functions in the
free theory, e.g.

〈φ(x1)〉0 = 1
2

∫
ddx′′∆(x1 − x′′)J(x′′) + 1

2

∫
ddx′∆(x′ − x1)J(x′)

∣∣∣∣
J=0

= 0

〈φ(x1)φ(x2)〉0 = 1
2∆(x1 − x2) + 1

2∆(x2 − x1) = ∆(x1 − x2)

∆(x1 − x2) is thus the 2-point function G
(2)
0 (x1, x2) in the free theory.

〈φ(x1) . . . φ(xN)〉0 = 0 if N is odd, in this theory, because of a symmetry
of the lagrangian under φ(x)→ −φ(x), but, for example

〈φ(x1)φ(x2)φ(x3)φ(x4)〉0 = ∆(x1 − x2)∆(x3 − x4)

+∆(x1 − x3)∆(x2 − x4)

+∆(x1 − x4)∆(x2 − x3) .
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x x
1 2

Figure 2: Graphical representation of the propagator ∆(x1 − x2).

1 2

3 4

+ +

Figure 3: Wick contractions for the 4-point function. Each line represents a factor ∆.

To see this, imagine expanding the exponential in (5) to O(J4). We get a
non-zero contribution if each of (x1, x2, x3, x4) hits one of the integration
variables x′ or x′′. In general, for N even,

〈φ(x1) . . . φ(xN)〉0 =
∑

∆(xj1 − xj′1) . . .∆(xjN/2 − xj′N/2) ,

where the sum is over all distinct ways of grouping the set {1, 2, . . . , N}
into pairs. This result, which in fact holds for any gaussian integral, is the
path integral version of Wick’s theorem. It tells us that in the free theory,
every correlation function can be expressed in terms of G

(2)
0 . Another

way of stating it is to observe that the generating function for connected
correlation functions W [J ] is quadratic in J . Thus all connected N -point
functions vanish for N > 2.

At this stage we can begin to introduce a graphical notation which will
become one of the building blocks for Feynman diagrams. We denote
∆(x1−x2) by an (unoriented) line connecting the points x1 and x2, as shown
in Fig. 2. (it doesn’t matter exactly where we put the points, only the
topology is important.) Then Wick’s theorem for N = 4 can be expressed
by connecting up the points (x1, x2, x3, x4) by lines in all possible ways,
such that exactly one line ends at each point. See Fig.3.

3.3.1 Minkowski space

In real time, the path integral is less well-defined, because the integrand is
oscillating rather than exponentially damped at large values of φ:

Z0[J ] =
∫

[dφ] ei
∫

( 1
2 (∂µφ)(∂µφ)− 1

2m
2φ2)dtdDx+i

∫
JφdtdDx
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where (∂µφ)(∂µφ) = (∂tφ)2 − (∇φ)2.

One way to make this better defined is to give the parameter m2 a small
negative imaginary part

m2 → m2 − iε
Now that the integral is absolutely convergent we can rotate the contour
in the t-integration by letting t = −iτ , whereby

Z0[J ] =
∫

[dφ] e−
∫

( 1
2 ((∂τφ)2+(∇φ)2)+ 1

2 (m2−iε)φ2)ddx+
∫
Jφddx

This is the generating function in euclidean space. So we can get all the re-
sults in Minkowski space by substituting τ = it in their euclidean versions.
This technique is called Wick rotation. Note that when we do this,

p · x = p0τ + p · x→ ip0t+ p · x

so that we have to let p0 → ip0 and then

p · x (euclidean)→ −pµxµ (Minkowski)

Thus

Z0[J ] = Z0[0] e−(i/2)
∫

(ddp/(2π)d)J̃(p)(p2−m2+iε)−1J̃(−p)

= e−(i/2)
∫
ddx′ddx′′J(x′)∆F (x′−x′′)J(x′′)

where

∆F (x1 − x2) =
∫ ddp

(2π)d
e−ipµ(xµ1−x

µ
2 )

p2 −m2 + iε
(6)

∆F is called the Feynman propagator. We shall discuss its physical inter-
pretation below. If we recall that

G(2)(x1, x2) =
δ2Z[J ]

δ(iJ(x1))δ(iJ(x2))

(note the factors of i), we see that

G
(2)
0 (x1, x2) = i∆F (x1 − x2)
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Re p
0

Im p
0

Figure 4: Poles of the Feynman propagator in the complex p0-plane.

Let us examine the p0 integration in (6):∫ ∞
−∞

e−ip0(t1−t2)

p2
0 − p2 −m2 + iε

dp0

2π

The integrand has poles at p0 = ±
√

p2 +m2 − iε (see Fig. 4). Suppose
that t1 > t2. Then we can close the p0 contour in the lower half plane,
picking up the pole with the positive sign of Re p0. This gives

G
(2)
0 (x1, x2) =

∫ dDp

(2π)D
e−i
√

p2+m2(t1−t2)+ip·(x1−x2)

2
√

p2 +m2

If t2 > t1 we pick up the other pole and get the same result with t1 and
t2 interchanged. Now recall that in the operator formulation is a vacuum
expectation value of a time-ordered product:

G
(2)
0 (x1, x2) = 〈0|T[φ̂(x1)φ̂(x2)]|0〉

Thus if we define
˜̂
φ(p, t) =

∫
dDx e−ip·xφ̂(x, t)

we see that, for t1 > t2,

〈0|˜̂φ(p1, t1)
˜̂
φ(p2, t2)

†|0〉 = (2π)Dδ(D)(p1 − p2)
e−i
√

p2
2+m2(t1−t2)

2
√

p2
2 +m2

The interpretation of this is that
˜̂
φ(p2, t2)

† creates a particle of momentum

p2 and energy
√

p2
2 +m2 at time t2, and

˜̂
φ(p1, t1) destroys a particle (note

that since φ is real,
˜̂
φ(p2, t2)

† =
˜̂
φ(−p2, t2). The rhs is the quantum am-

plitude for the particle to propagate from x2 to x1, and is therefore called
the propagator.
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4 Interacting field theories

Interactions in field theories, leading to nontrivial particle scattering, cor-
respond to the appearance in the lagrangian density of terms higher than
quadratic in the fields. In general such QFTs are not exactly solvable, and
it is necessary to adopt various approximation schemes. The most common
is perturbation theory in the higher order terms. This leads to Feynman
diagrams.

4.1 Feynman diagrams

In general we write the lagrangian density as

L = L0 + LI

where LI contains only terms quadratic in the fields. We first consider the
euclidean case. Consider the N -point function

G(N)(y1, . . . , yN) =

∫
[dφ]φ(y1) . . . φ(yN)e−S0−

∫
LI(x)ddx∫

[dφ]e−S0−
∫
LI(x)ddx

(7)

where LI(x) ≡ LI [φ(x)]. We can expand the numerator and denominator
as a power series in LI by writing

e−
∫
LI(x)ddx =

∞∑
n=0

(−1)n

n!

∫
LI(x1) . . .LI(xN)ddx1 . . . d

dxn

Each term in the numerator then involves evaluating

〈φ(y1) . . . φ(yN)LI(x1) . . .LI(xn)〉0 (8)

in the free theory, and, since LI is a polynomial in the field φ, this can be
done using Wick’s theorem.

Throughout this course, with a few exceptions, we shall consider in detail
one of the simplest interacting field theories, with

LI =
λ

4!
φ(x)4 (9)
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Figure 5: One of the possible Wick contractions for the connected first order term in 2-point
function.

Figure 6: One of the possible Wick contractions for the disconnected first order term in 2-point
function.

Although this theory has few direct applications in particle physics (except
maybe to describe the self-interactions of Higgs bosons) it does illustrate
many of the important aspects of QFT without many of the obscuring
algebraic details which arise in theories of fermions and gauge bosons.
In addition, it has direct application to describing critical behaviour in
magnets and other condensed matter systems.

In order to apply Wick’s theorem it is useful to consider the coordinates
of the four powers of φ(x) occurring in (9) as being slightly different. In
(8) we then have a collection of fields φ(yj) denoted by single external
points, and φ(xj)

4 by quadruplets of internal points. All of these must be
connected in pairs by propagators in all possible ways, according to Wick’s
theorem. It is useful to consider the first few simplest cases.

Consider first the 2-point function G(2)(y1, y2). At order n = 0 it is given
by a single propagator, ∆(y1−y2). For n = 1 there are two different classes
of Wick contractions: either each point y1, y2 is contracted to one of the
points at x, and the remaining two at x are contracted to each other, as in
Fig. 5 – this can happen in 4 · 3 = 12 ways; or y1 and y2 are connected to



QFT1 22

+ +

Figure 7: Feynman diagrams for the numerator in the 2-point function to O(λ).

+1

Figure 8: Feynman diagrams for the denominator in the 2-point function to O(λ).

each other and the remaining 4 points at x are contracted together, as in
Fig. 6 – this happens in 3 ways. Thus, to O(λ), the numerator in (7) is

∆(y1 − y2) −12
λ

4!

∫
∆(y1 − x)∆(x− x)∆(x− y2)d

dx

−3
λ

4!
∆(y1 − y2)

∫
∆(x− x)2ddx+ · · ·

This is represented by the Feynman diagrams in Fig. 7. Each diagram
corresponds to a topologically different set of contractions. The last inte-
gral appears to diverge proportional to total space-time volume V T , since
its integrand in independent of x. However the denominator in (7) is, to
the same order, given by the diagrams in Fig. 8

1− 3
λ

4!

∫
∆(x− x)2ddx+ · · ·

If we first keep V T finite, divide these two expressions and expand in λ to
the order required, the potentially divergent terms cancel. This is an exam-
ple of a general result that diagrams which contain pieces not connected to
the external points can be ignored. Note that the overall numerical factor
in the connected diagram is 1/2. This is called its symmetry factor.

The diagrams contributing to G(2) at second order, n = 2, are shown in
Fig. 9. As an example consider the last one. We can either connect y1 to
x1 and y2 to x2, or vice versa. These give the same result on integration
over x1, x2. Each of these contractions can be done in 4 · 4 = 16 ways. see
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Figure 9: Connected 2-loop diagrams for the 2-point function.

Figure 10: Starting to make the Wick contractions for the last diagram in Fig. 9.

Fig. 10. The remaining 3×3 points can be connected in (3!)2/3! = 6 ways.
Thus this diagram evaluates to

(2 · 16 · 6)
1

2!

(−λ
4!

)2 ∫
∆(y1 − x1)∆(x1 − x2)

3∆(x2 − y2)d
dx1d

dx2

In this case the overall factor is 1/3!.

Now consider the 4-point function. At order n = 0 there are only the
disconnected diagrams shown in Fig. 3. Since we can build disconnected
diagrams out of lower-order connected ones, we need consider only the
connected ones. To first order, this is shown in Fig. 11. There are 4! ways
to connect the external point to the internal one, which exactly cancels
the 1/4! in (9) (which is why it was put there in the first place.) Thus the
contribution to G(4)

c is

−λ
∫ 4∏
j=1

∆(yj − x)ddx

To order n = 2, the connected diagrams are shown in Fig. 12 and Fig. 13.

Figure 11: Lowest order diagram for the connected 4-point function.
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Figure 12: Connected 1-loop 1PR diagrams for the 4-point function.

Figure 13: A 1-particle reducible 1-loop diagram for the 4-point function.

The first one in Fig. 12 evaluates to (check the overall factor for yourselves)

(−λ)2

2

∫
∆(y1 − x1)∆(y2 − x1)∆(x1 − x2)

2∆(x2 − y3)∆(x2 − y4)d
dx1d

dx2

Diagrams like that in Fig. 13 are formed by attaching together lower order
diagrams by a single external leg. They are called one-particle reducible
(1PR) and we shall see that they can be taken into account automatically.

At this point we are ready to state the

4.1.1 Feynman rules in euclidean position space for the connected N-point
functions of φ4 theory

1. draw all topologically distinct connected diagrams with N external
lines and each internal vertex attached to 4 lines

2. to each line associate a factor ∆(x′ − x′′) (where x′ and x′′ can be
either an internal or external vertex)

3. to each internal vertex associate a factor −λ
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4. integrate over internal vertices
∏
j
∫
ddxj

5. multiply by the symmetry factor 1/(integer).

Only the last rule can sometimes cause confusion. For a generic diagram,
the number of ways the vertices can be connected up exactly cancels the
factor 1/n! coming from the expansion of the exponential and the factors
(1/4!)n. However in diagrams with some degree of symmetry the number
of possible contractions is fewer. This is what happened in our examples
above. In the second diagram of Fig. 7 we could imagine twisting the
bubble by 180◦, and the same in Fig. 12. These lead to a factor 1/2!.
Similarly for the first two diagrams of Fig. 9 we get (1/2!)2. In the third
diagram there is a permutation symmetry of the 3 external lines, leading
to a factor 1/3!. In general the symmetry factor is the inverse of the
number of elements in the symmetry group of the diagram. When in
doubt, however, you can always go back to enumerating the number of
distinct Wick contractions which lead to a given diagram.

4.1.2 Feynman rules in euclidean momentum space

Since the free propagator ∆(x′ − x′′) is expressed as an integral over p,
and in any case for most purposes we are more interested in the Fourier
transforms of N -point functions, it is easier to evaluate most diagrams in
momentum space. To do this, we first insert

∆(xj − xk) =
∫ ddpjk

(2π)d
eipjk(xj−xk)

p2
jk +m2

for each line. At same time we define the Fourier transforms∫
G(N)(y1, . . . , yN)c e

i(p1y1+···pNyN )ddy1 . . . d
dyN

≡ G̃(N)(p1, . . . , pN)c (2π)dδ(d)(p1 + · · ·+ pN) ,

pulling out an overall momentum-conserving delta-function that must be
there since G(N) is a function of only coordinate differences. Then we can
carry out the integrations over the internal coordinates. At the jth vertex
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we have ∫
ei(
∑
k pkj)xjddxj = (2π)dδ(d)(

∑
k

pkj) ,

that is, the total momentum entering a given internal vertex vanishes – the
momentum is conserved. This means that we get linear relations between
the different pjk which can be solved in terms of the external momenta
pj. If the diagram contains loops, however, there will remain an number
of undetermined integration variable equal to the number of loops This is
the smallest number of lines which must be broken to get a connected tree
diagram with no loops. We then have the Feynman rules in momentum
space for the G̃(N)(p1, . . . , pN):

1. draw all topologically distinct connected diagrams with N external
lines and each internal vertex attached to 4 lines

2. assign momenta flowing along each line so that the external lines have
momenta {pj} and momentum is conserved at each internal vertex

3. to each line associate a factor (p2
jk +m2)−1

4. to each internal vertex associate a factor −λ

5. integrate over remaining loop momenta
∏
j
∫
ddp/(2π)d

6. multiply by the symmetry factor 1/(integer).

In Minkowski space, the combinatorics are the same: only the factors of i
differ:

1. draw all topologically distinct connected diagrams with N external
lines and each internal vertex attached to 4 lines

2. assign momenta flowing along each line so that the external lines have
momenta {pj} and momentum is conserved at each internal vertex

3. to each line associate a factor i/(p2
jk −m2 + iε)

4. to each internal vertex associate a factor iλ

5. integrate over remaining loop momenta
∏
j
∫
ddp/(2π)d

6. multiply by the symmetry factor 1/(integer).
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4.1.3 Feynman rules for other QFTs

The rules for other field theories have basically the same building blocks of
propagators and vertices. However these can vary depending on the sym-
metries of the lagrangian and the form of the interactions. It is important
to be able to write down the Feynman rules without always going back to
first principles. However this comes only with experience!

As an example, consider a complex scalar field φ(x), with (euclidean) la-
grangian density

L = (∂φ∗) · (∂φ) +m2φ∗φ+ 1
4λ(φ∗φ)2

Note how the factors of 2 are chosen to differ from the real case. This is
because when we work out the 2-point function in the free theory we find

〈φ(x1)φ
∗(x2)〉 =

∫ ddp

(2π)d
eip(x1−x2)

p2 +m2
= ∆(x1 − x2)

as before. On the other hand 〈φφ〉 = 〈φ∗φ∗〉 = 0. This can be traced to
a U(1) symmetry of the lagrangian under φ→ eiαφ, φ∗ → e−iαφ∗. In field
theory, such continuous symmetries are associated with conserved currents,
in this case

Jµ ∝ i(φ∗∂µφ− φ∂µφ∗)
You can check, using Lagrange’s equations, that ∂µJµ = 0, and, moreover,
using Wick’s theorem, that

〈φ(x1)
∫
S
JµdS

µφ(x2)〉 ∝ 〈φ(x1)φ
∗(x2)〉

where
∫
S is over the surface of a small sphere enclosing x2 (but not x1). If Jµ

is normalised correctly the coefficient is unity. This means that φ∗(x) acts
as a source of unit flux of the current (and φ(x) as a sink.) In Minkowski
space, the particles created and destroyed by the quantum field φ̂(x) have
unit charge with respect to this U(1) symmetry. Physically, this could be
ordinary electric charge or something more exotic. Note that if we interpret
〈φ(x1)φ

∗(x2)〉 = 〈φ(x2)φ
∗(x1)〉 in terms of the vacuum expectation value of

time-ordered field operators as before, we see that in this case φ̂† creates
particles of charge +1 but it also destroys particles of charge −1 (and



QFT1 28

φφ *

Figure 14: Propagator for a complex scalar field is oriented and indicates flow of charge.

Figure 15: This diagram has symmetry factor 1/2.

oppositely for φ̂). That is, 〈φ(x1)φ
∗(x2)〉 describes the propagation of a

particle of charge +1 if t1 > t2, but also the propagation of a particle
of charge −1, the antiparticle, if t2 > t1. This is an example of how,
in a relativistic field theory, every particle has to have a corresponding
antiparticle of opposite charge.

In Feynman diagrams, we have to distinguish the ends of the propagator
according to whether they correspond to φ∗ or φ. We do this by orienting
the line with an arrow from x2 to x1 (see Fig. 14). The above discussion
shows that we can think of the arrow as indicating the flow of charge
along the line. An interaction vertex (φ∗φ)2 then always has exactly two
arrows entering and two leaving: it conserves charge. If we work out the
4-point function 〈φ(y1)φ(y2)φ

∗(y3)φ
∗(y4)〉 to O(λ) we find that the number

of allowed contractions exactly cancels the factor 1
4 in the lagrangian.

Note also that the symmetry factors can change. In Fig. 15 the symmetry
factor is 1

2 , but in Fig. 16 it is 1.

4.2 Evaluation of Feynman diagrams

The evaluation of the integrals involved in Feynman diagrams can be quite
difficult - in general only one and (some) 2-loop diagrams can be evaluated
analytically. However it is important to understand how to do this in order
to understand the properties of the result.

Figure 16: This diagram has symmetry factor 1.
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As a first example consider the 1-loop integral for the 2-point function (in
euclidean space) corresponding to the second diagram in Fig. 7:

I2 =
∫ ddp

(2π)d
1

p2 +m2

(we keep d arbitrary because it will turn out the the dependence on this is
interesting.) There are many ways to evaluate this. One is to write

(p2 +m2)−1 =
∫ ∞
0
e−u(p2+m2)du

then to perform the p-integration

∫
e−u

∑d
i=1 p

2
i

d∏
i=1

dpi =

(
π

u

)d/2

Thus

I2 =
πd/2

(2π)d

∫ ∞
0
u−d/2e−um

2

du

Rescaling u→ um−1/2 then gives

I2 =
πd/2

(2π)d
Γ(1− d

2)md−2 (10)

This simple example illustrates an important point. The result makes sense
for non-integer values of d, even though of course in physical applications it
is always an integer. However, the gamma function is infinite at its poles,
the first (as d increases) being at d = 2. This infinity reflects the fact that
for large p the original integral behaves like

∫
ddp/p2 and therefore converges

only for d < 2. Only in this case is the result of the integral given by
(10), otherwise the integral diverges. This is an example of the ultraviolet
(UV) divergences which plague the perturbation expansion of QFT. The
integral could be rendered finite by restricting the allowed values of p to
satisfy |p| < Λ, where Λ is called a UV cut-off. This is an example of a UV
regulator: something which makes the integrals finite. In the context of the
original lattice field theory this would make sense, with Λ ∼ a−1, the inverse
lattice spacing. In the critical dimension, in this case two, the leading
dependence on Λ is logarithmic. It is easy to see from the original integral
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p

q − p

Figure 17: Internal momenta assignment for the 1-loop contribution to the 4-point function.
Note that the arrows now indicate flow of momentum, not charge!

that in this case I ∼ (1/2π) log(Λ/m). Another way to regulate the theory
would be to assume that d < 2 and then try to continue to the physical
dimensionality at the end: this is called dimensional regularisation.

A second more complicated example is the 1-loop contribution to the 4-
point function. With the momentum assigned as in Fig. 17 the integral
is

I4 =
∫ ddp

(2π)d
1

(p2 +m2)((q − p)2 +m2)

where q = p1 + p2 = −p3 − p4.

A useful tool is Feynman’s identity

1

a1 . . . an
=

1

(n− 1)!

∫
{xj≥0}

∏n
j=1 dxjδ(

∑n
j=1 xj − 1)

[x1a1 + · · ·+ xnan]n

where the integral is over an (n − 1)-dimensional simplex. Applying this
for n = 2 to our integral we get

I =
∫ 1

0
dx

∫ ddp

(2π)d
1

[x(p2 +m2) + (1− x)((q − p)2 +m2)]2

Expanding out the expression in square brackets and completing the square:

p2 − 2(1− x)p · q + (1− x)q2 +m2 =

(p− (1− x)q)2 − (1− x)2q2 + (1− x)q2 +m2 = p′
2

+ x(1− x)q2 +m2

where p′ = p− (1− x)q. Then

I4 =
∫ 1

0
dx

∫ ddp′

(2π)d
1

[p′2 + x(1− x)q2 +m2]2

The p′-integral can be done using the same method as above:

I4 =
∫ 1

0
dx

∫ ∞
0
udue−u(x(1−x)q2+m2)

∫ ddp′

(2π)d
e−up

′2
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=
πd/2

(2π)d

∫ ∞
0
u1−d/2e−udu

∫ 1

0
(x(1− x)q2 +m2)d/2−2dx

=
πd/2

(2π)d
Γ(2− d

2)
∫ 1

0
(x(1− x)q2 +m2)d/2−2dx

The integral is of a finite integrand over a finite interval and could easily
be done numerically. Note that the first pole is now at d = 4, reflecting
the fact that the integral behaves like

∫
(ddp/(p2)2) for large p.

5 Renormalisation

We have seen that most Feynman integrals are UV divergent for large
enough d, and therefore do not immediately make sense. However, this
perturbation expansion is in powers of a quantity λ which, we shall argue,
is not itself directly measurable. Therefore there is no physical requirement
for the coefficients in the expansion to be well-defined. The renormalisation
procedure attempts to make sense from this nonsense. It proceeds in several
steps:

1. first relabel the fields φ→ φ0 and the parameters m→ m0, λ→ λ0 in
recognition of the fact that these are not the physical quantities (they
are called the bare field, mass, and coupling.) Similarly relabel the

G(N) as G
(N)
0 - the bare N -point functions. [Not to be confused with

the earlier subscript 0 for the free theory.]

2. understand exactly where the divergences occur.

3. regularise the theory, that is make all Feynman integrals finite. This
can be done e.g., by cutting off all internal momentum integrals |p| <
Λ, or by reducing d until all integrals are finite (or otherwise).

4. decide what quantities are physically measurable and compute them
as a power series in λ0. Two of these, which reduce to m0 and λ0 as
λ0 → 0, will be termed m and λ.

5. try to eliminate m0 and λ0 in favour of m and λ in all physical quan-
tities.
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Figure 18: Decomposition of a diagram into one-particle irreducible subdiagrams.

6. if the resultant expressions have a finite limit as the regulator is re-
moved, i.e. Λ → ∞ or d → physical dimension, the theory is renor-
malisable, and we have made sense of it – expressed all measurable
observables in terms of a set of others – hopefully a finite set otherwise
the theory would have no predictive power.

5.1 Analysis of divergences

Divergences occur in loop integrals. Therefore the parts of diagrams which
are tree-like are problem-free. We recognise this by breaking each diagram
into subdiagrams connected by single lines, as in Fig. 18. Some of these will
occur as loop corrections to the external lines, as in Fig. 13. The central
pieces left over are

N∏
j=1

G(2)(pj)
−1G(N)(p1, . . . , pN)

These are called the truncated N -point functions. However there can still
be parts left over which are one-particle reducible (see Fig. 18). We define
Γ(N)(p1, . . . , pN) to be the one-particle irreducible (1PR) part of the above
– by definition, all the diagrams in Γ(N) cannot be disconnected by breaking
a single line. Any divergences must occur within these subdiagrams – if we
succeed in making sense of these we make sense of the whole theory. Note
that Γ(2)(p) = G(2)(p)−1.

The integrand in any diagram depends on a number of loop momenta
(k1, . . . , k`) where ` is the number of loops. The most obvious place to look
for a UV divergence is where all of these are large and of the same order.
Fortunately the degree of these is easy to see just from power counting: if
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a diagram has ` loops and P propagators, the overall power of momentum
is k`d/k2P , so that if δ ≡ `d−2P ≥ 0, the diagram is primitively divergent.
If δ < 0, on the other hand, we cannot say for sure that it is convergent,
since there may be divergences coming from regions where some of the kj
are large and others not. We discuss these later.

The above formula for δ, called the superficial degree of divergence of a
diagram, is not very useful because it seems to depend on the details of
the diagram. In fact this is not the case, as can be seen by power-counting,
otherwise known as dimensional analysis. Start with the action

S =
∫ [

1
2(∂φ)2 + 1

2m
2
0φ

2 + (λ0/4!)φ4
]
ddx

Since S is exponentiated in the path integral, it must be dimensionless in
units where h̄ = 1. We denote the fact that a quantity X has a momentum
dimension of dX by [X] = kdX . Thus [p] = k1, [x] = k−1 and [S] = k0.
From this we immediately deduce that [(∂φ)2] = kd so [φ] = k(d−2)/2. Then
[λ0φ

4] = [λ0]k
2(d−2) = kd so

[λ0] = k4−d

Now the G(N) in real space are just 〈φ(y1) . . . φ(yN)〉 so have dimension
kN(d−2)/2. Going to momentum space we have to do N integrals

∫
ddx ∼

k−Nd and divide off an overall momentum-conserving delta function. So

[G̃(N)] = kd · k−Nd · kN(d−2)/2

Note in particular that [G̃(2)] = k−2. Thus

[Γ(N)] = kN+d−Nd/2

Finally, these are to be expanded in powers of λ0

Γ(N) =
∞∑
n=0

Γ(N)
n λn0

and it is the coefficients Γ(N)
n which are given by sums of Feynman diagrams.

Their dimension gives the superficial degree of divergence of each diagram
contributing to Γ(N) at O(λn0)

δ = d+N(1− d/2) + n(d− 4)
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Figure 19: A diagram in Γ(6) which is not primitively divergent for d = 4 but which contains a
divergent subdiagram.

If δ ≥ 0, the diagrams are primitively divergent. We distinguish three
different cases depending on the value of d:

• d < 4: in this case [Γ(2)
n ] = k2+n(d−4), and all the other δs for N ≥ 4

are negative. Only a finite number of diagrams, contributing to Γ(2)

up to order n ≤ 2/(4− d), are primitively divergent.

• d = 4: [Γ(2)] = k2 and [Γ(4)] = k0 are primitively divergent to all
orders; all other N are not. Note that the coupling constant λ0 is
dimensionless for d = 4 – this is called the critical dimension of the
theory.

• d > 4: all the Γ(N) are primitively divergent if evaluated to sufficiently
high order.

Note that the critical dimension, and the number of primitively divergent
Γ(N) at this dimension, depends on the particular theory.

Of course this classification only identifies primitive divergences which oc-
cur as all the loop momenta get large. There could, for example, be other
divergences for larger N , for example those shown in Fig. 19. However
these generally occur in subdiagrams which are of lower order in λ0 than
the whole diagram. Therefore if we implement the renormalisation proce-
dure order-by-order, these divergences will already have been dealt with.
Of course, proving that this actually works to all orders is quite compli-
cated.
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5.2 Mass, field, and coupling constant renormalisation

Let us suppose that d is at, or just below, four, which is the most inter-
esting case for λφ4 theory. In that case, both Γ

(2)
0 and Γ

(4)
0 have primitive

divergences, to arbitrarily high order. We first study those in Γ
(2)
0 .

5.2.1 Mass renormalisation

We already evaluated G
(2)
0 to one loop (see Fig. 7):

G
(2)
0 (p) =

1

p2 +m2
0

+
−λ0

2

1

(p2 +m2
0)

2
I2 +O(λ2

0)

where, in dimensional regularisation,

I2 =
πd/2

(2π)d
Γ(1− d/2)md−2

0

or, with a momentum cut-off

I2 =
∫
|p|<Λ

ddp

(2π)d
1

p2 +m2
0

∼ Λd−2

for d > 2, or log Λ for d = 2.

Then
Γ

(2)
0 (p) = G

(2)
0 (p)−1 = p2 +m2

0 − (−λ0/2)I2 +O(λ2
0)

This means that the pole in G(2)(p), or the zero in Γ(2)(p), do not occur
at p2 = −m2

0 but at some other value depending on λ0, m0 (and Λ).
Recall that in Minkowski space this gives the (mass)2 of the particle, and
is therefore physical. We therefore define the renormalised mass m in the
euclidean theory by

Γ
(2)
0 (p2 = −m2) = 0

Since I2 is independent of p,

m2 = m2
0 + (λ0/2)I2 +O(λ0)

2 ,

Note that m2 > m2
0, so that if we want to consider the massless limit

m2 → 0, then m2
0 is actually negative. This underlines the fact that it is

not a physical parameter.
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Figure 20: O(λ0) corrections to the 2-pt function, after mass renormalisation. The propagator
now carries the physical mass m and the second term represents the counterterm δm2.

To higher orders the diagrams contributing to Γ(2)(p) depend on p, and
m is given only implicitly in terms of m2

0. However, this is not in fact a
problem: what we actually do is to write

m2
0 = m2 + δm2

so that, in the lagrangian,

L = 1
2(∂φ)2 + 1

2m
2φ2 + 1

2δm
2φ2 + · · ·

We now treat the first two terms as the free theory, so the propagator in
Feynman diagrams carries the physical mass m, and we treat the third
term (which is O(λ0)) as an interaction, denoted in Feynman diagrams by

a cross. The O(λ0) contributions to G
(2)
0 are then as shown in Fig. 20,

where, to repeat, the lines correspond to (p2 +m2)−1. The term 1
2δm

2φ2 in
the lagrangian is called a counterterm. Its role is to make sure, order by
order in λ0, that the pole of G

(2)
0 (p) remains at p2 = −m2. The beauty of

this is that we never actually have to compute δm2!

5.2.2 Field renormalisation

Exactly at d = 4, Γ
(2)
0 (p) diverges quadratically, ∼ Λ2. This means that

there could be subleading terms which are still divergent. In fact if we
consider a Taylor expansion about p2 = −m2

Γ
(2)
0 (p) = Γ

(2)
0 (p2 = −m2) + (p2 +m2)

∂Γ
(2)
0 (p)

∂p2

∣∣∣∣∣∣∣
p2=−m2

+ · · · ,

the first term vanishes, but the second term has a superficial degree of
divergence δ = 0 and therefore is in general logarithmically divergent in d =
4. On the other hand, the higher order terms are superficially finite (which
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means that we would find the same logarithmic divergences expanding
about some other value of p2.)

So how should we absorb these divergences? The answer is to remember
that Γ

(2)
0 is defined from the 2-point function 〈φ0φ0〉, and that φ0(x) is

just an integration variable in the path integral – by itself it has no phys-
ical meaning. So we suppose that there is a physical field φ(x) which is
proportional to φ0:

φ(x) = Z
−1/2
φ φ0(x)

and the physical correlation functions are

G(N)(y1, . . . , yN) = 〈φ(y1) . . . φ(yN)〉 = Z
−N/2
φ 〈φ0(y1) . . . φ0(yN)〉

Note that this implies that

Γ(N) = Z
N/2
φ Γ

(N)
0

The factor Z
−1/2
φ is called the field renormalisation constant (or wave-

function renormalisation in some texts.) It is fixed by requiring

∂Γ(2)(p)

∂p2

∣∣∣∣∣∣
p2=−m2

= 1

Equivalently

Z−1
φ =

∂Γ
(2)
0 (p)

∂p2

∣∣∣∣∣∣∣
p2=−m2

Note that Zφ = 1+0(λ2
0) in this theory, because I2 does not depend on the

external momentum. This is not the case for a general theory.

5.2.3 Coupling constant renormalisation

In this theory Γ
(4)
0 is superficially logarithmically divergent in d = 4 to all

orders. Since to lowest order it is just given by −λ0, this suggest that we
define the renormalised coupling constant λ in terms of Γ(4). As we shall
show later, in Minkowski space Γ(4)(p1, p2,−p3,−p4) gives the scattering
amplitude for particle of 4-momenta (p1, p2) to scatter into (p3, p4), so it
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is certainly physically measurable. However, we want to define λ as a
number, not a function, which means we have to specify particular values
for the momenta. One choice which makes sense in the scattering context
is to choose its value at zero relative 3-momenta, i.e.

iλ ≡ Γ(4)((m,0), (m,0), (−m,0), (−m,0))

in Minkowski space.

5.2.4 Renormalisation schemes

We have described one particular way of defining the renormalised theory,
motivated by the particle-scattering application of the theory. This is often
termed mass-shell renormalisation. However, since primitive divergences
are more or less independent of the external momenta, we may choose
other schemes which are equally valid and often easier to compute with,
and physically relevant for other applications. Renormalised correlation
functions in different schemes are related by transformations which are
finite as the regulator is removed.

An example is zero-momentum normalisation: in euclidean space

m2 = Γ(2)(p = 0)
∂Γ(2)(p)

∂p2

∣∣∣∣∣∣
p=0

= 1 λ = −Γ(4)(p1 = . . . = p4 = 0)

Let us compute the renormalised 4-point function to one loop for d = 4 in
this scheme.

Γ(4)(p1, . . . , p4) = Z2
φ

(
−λ0 + 1

2λ
2
0 [I4(p1 + p2) + I4(p1 + p3) + I4(p1 + p4)] +O(λ3

0)
)

where, as we computed earlier

I4(q) =
πd/2

(2π)d
Γ(2− d/2)

∫ 1

0
[x(1− x)q2 +m2]d/2−2dx

Since Zφ = 1 +O(λ2
0) in this theory, we set it = 1 to the order required, so

λ = λ0 − 3
2λ

2
0

πd/2

(2π)d
Γ(2− d/2)md−4 +O(λ3

0)
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Solving for λ0 in terms of λ

λ0 = λ+ 3
2λ

2 π
d/2

(2π)d
Γ(2− d/2)md−4 +O(λ3)

Inserting this into the expansion for Γ(4)

Γ(4)(p1, . . . , p4) = −λ+ 1
2λ

2 π
d/2

(2π)d
Γ(2− d/2)

×
(∫ 1

0
([x(1− x)(p1 + p2)

2 +m2]d/2−2 −md−4]dx+ perms

)

Removing the regulator, that is letting d → 4, and recalling that Γ(2 −
d/2) ∼ 2/(4− d) in that limit,

Γ(4)(p1, . . . , p4) = −λ− λ2

32π2

∫ 1

0
log

x(1− x)(p1 + p2)
2 +m2

m2

 dx+ perms


As advertised, the renormalised correlation functions are finite when ex-
pressed in terms of the renormalised parameters. Note however, that the
logarithm in the integrand is not anything we could have got out of the
elementary Feynman rules – even the sign of the O(λ2) term is different!

This example points the way to another, even simpler, renormalisation
scheme. We can write, in general,

Γ(4) = Z−1
λ Γ

(4)
0 (11)

where Zλ = 1 + O(λ) = 1 + O(λ0). The important property of this O(λ)
term is that it has a pole as d → 4 which, perturbatively, cancels the
divergence in Γ(4). In fact we see from the above that

Zλ = 1− λ0

mε

(
1

16π2ε
+ . . .

)
+O(λ0)

2

where ε ≡ 4−d (not to be confused with the ε of the iε prescription) and the
omitted terms in the parentheses are finite as ε→ 0. Minimal subtraction
renormalisation amounts to neglecting this finite term altogether, that is,
we define the renormalised λ = Zλλ0, with the condition that Zλ contains
only pole terms in ε with coefficients fixed by the requirement that the lhs
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of (11) is finite as ε → 0. The field renormalisation is defined similarly,
and mass renormalisation simply does not show up in this scheme, since it
corresponds to poles at d = 2.

However neither of the above schemes work in the case where the renor-
malised mass m = 0, because of infrared (IR) divergences. (Think, for
example about the 1-loop coupling constant correction, which would in-
volve the integral

∫
(ddp/p4) - UV divergent for d ≥ 4 and IR divergent

for d ≤ 4.) Massless theories are important because gauge theories are
massless, at least perturbatively, and in critical behaviour being massless
is the same as being at the critical point. So we need to know how to
renormalise them. The way out is to introduce an extra parameter µ with
the dimension of mass, and renormalise at values of the external momenta
proportional to µ

m2 = Γ(2)(p = 0) = 0 but
∂Γ(2)(p)

∂p2

∣∣∣∣∣∣
p2=µ2

= 1, λ = −Γ(4)(pj ∼ µ)

It will turn out that the necessity to introduce such a scale has dramatic
consequences.

For d < 4 the IR divergences of the massless theory are even worse. In fact
the only way to define the renormalised massless theory perturbatively for
d < 4 is in a double expansion in λ and 4− d.

We are now ready to make the statement of renormalisability for λφ4 theory.
Starting with the regularised bare theory, parameterised by m0 and λ0, if
we make:

• field renormalisation, φ = Z
−1/2
φ φ0 such that, e.g. ∂Γ(2)(p)/∂p2|p=0 =

1;

• mass renormalisation, e.g. m2 = Γ(2)(p = 0);

• coupling constant renormalisation, e.g. λ = −Γ(4)(pj = 0) .

Then, for d ≤ 4, all renormalised N -point functions G̃(N)(p1, . . . , pN) have
a finite limit as the regulator is removed, when expressed in terms of the
renormalised mass m and coupling constant λ.



QFT1 41

Figure 21: One loop correction to the composite field φ2.

Note that this guarantees the finiteness of the correlation functions in po-
sition space

〈φ(y1) . . . φ(yN)〉 =
∫ N∏
j=1

eipjyjddpjG̃
(N)(p1, . . . , pN)(2π)dδ(d)(

∑
j

pj)

only if the points {yj} do not coincide. In this case the additional momen-
tum integrals are damped by phase oscillations of factors like ei(yj−yj′)pj .
When some of the {yj} do coincide there are still divergences. For exam-
ple, to one loop

〈φ0(y1)
2φ0(y2)φ0(y3)〉

is given by the diagram in Fig. 21, which is logarithmically divergent and
is not made finite by field or coupling constant renormalisation. This is an
example of a composite field. It requires further renormalisation

φ2(y) = Z−1
φ2 φ0(y)2

where Zφ2 6= 1 is fixed by requiring that the Fourier transform of
〈φ2(y1)φ(y2)φ(y3)〉 is finite at a suitably chosen normalisation point. One
way to state this is that, in renormalised QFT,

φ2(x) 6= φ(x) · φ(x) (!!)

Similar additional renormalisations are in principle required for all compos-
ite fields, e.g. φ3, (∂φ)2, and so on. An important exception are conserved
currents Jµ because their integrals give physical charges. However, some
currents are anomalous: while conserved in the classical theory their quan-
tum versions are not.

5.2.5 Renormalisation in other theories

The process of renormalisation in scalar theories with other interaction
lagrangians follows the same steps as for λφ4 theory (gauge theories are
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Figure 22: Loop correction to Γ(4) in φ6 theory which is linearly divergent in d = 3 and requires
subtraction.

more complicated.)

• do power counting to identify the primitively divergent Γ(N);

• identify the critical dimension dc for which the coupling constant be-
comes dimensionless: for d < dc only a finite number of Γ(N) are
primitively divergent and only to a finite order, while for d = dc only
a finite number diverge, but to all orders;

• at or just below dc, make finite the power law diverges in by subtrac-
tions, as for the mass in φ4 theory;

• remaining logarithmic divergences are taken into account by field and
coupling constant renormalisation.

As an example, consider κφ6 theory. The previous result

[Γ(N)] = kN+d−Nd/2

still holds, but now we see that

[κ] = [Γ(6)] = k6−2d

so dc = 3. At dc, [Γ(2)] = k2, [Γ(4)] = k1 and [Γ(6)] = k0. This means
that this theory requires mass, field and coupling constant renormalisation
as before, but also a counterterm coupling to φ4 in the lagrangian. This
is because even if this term was not present in the bare theory, it gets
generated by loop corrections, for example Fig. 22. Another way to state
this is, in order to make the renormalised φ4 coupling λ vanish, so we are
talking about φ6 rather than φ4 theory, then the bare φ4 coupling λ0 6= 0
and in fact is linearly divergent.
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6 Renormalisation Group

We often want to understand the behaviour of correlation functions in
momentum space as p → ∞ (their UV, or high-energy, behaviour), or, in
the massless theory, as p → 0 (their IR behaviour). This is the object of
the renormalisation group (RG). Note that, despite its name, this is not
a group in the mathematical sense. Also, some students may be confused
having seen the so-called real-space RG in the context of lattice statistical
mechanics models. The two sets of ideas are related, but we shall not
discuss this here (see separate notes on the web page.)

One naive way to understand the p-dependence might be through dimen-
sional analysis. For example, we know that [G(2)] = k−2 so we might
suppose that G(2)(p) ∼ 1/p2 when p is larger than all the other quantities
in the theory with the dimensions of mass. However, this is ignoring the
fact that the renormalised theory is defined through the limit Λ→∞ of a
cut-off theory, and so p is never larger than this implicit scale Λ. Thus all
we can really assert on the basis of dimensional analysis is

G
(2)
0 (p) ∼ 1

p2
F (p2/Λ2)

where F is some presently unknown function. Equivalently, in the renor-
malised massless theory (which we shall mainly consider)

G(2)(p) ∼ 1

p2
F̃ (p2/µ2) (12)

where µ is the renormalisation scale discussed in the last section and F̃ is
another unknown function.

We note from (12) that instead of considering the p-dependence of G(2) we
may equally well study its dependence on µ. The renormalisation group
(RG) is a way of doing this.
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6.1 Callan-Symanzik equation

In what follows it is useful to define the dimensionless renormalised cou-
pling constant

g ≡ λµ−ε

where ε = 4 − d as before. We shall assume that the renormalised mass
m = 0, only later seeing how things change in the massive case.

The statement of renormalisability says that

Γ(N)({pj}, g, µ) = Z
N/2
φ (λ0, µ) Γ

(N)
0 ({pj}, λ0)

has a finite limit as the regulator (in this case dimensional, since we haven’t

included Λ in the argument of Γ
(N)
0 ) is removed. In writing this we have

been careful to exhibit of which variables the various quantities are consid-
ered to be functions. Note that we could equally (and indeed will) consider
Zφ to be a function of g and µ.

Now we exploit the simple but powerful fact that the bare vertex functions
Γ

(N)
0 do not know anything about the renormalisation scale µ. Thus

µ
∂

∂µ
Γ

(N)
0 ({pj}, λ0)

∣∣∣∣∣
λ0

= 0

where the derivative is taken keeping the bare coupling λ0 fixed (the mo-
menta {pj} are held fixed until further notice). In terms of the renormalised
vertex functions this seems less of a tautology:

µ
∂

∂µ

(
Z
−N/2
φ (g, µ) Γ(N)({pj}, g, µ)

)∣∣∣∣∣
λ0

= 0

Using the chain ruleµ ∂

∂µ
+ µ

∂g

∂µ

∣∣∣∣∣
λ0

∂

∂g
− N

2
Z−1
φ µ

∂Zφ
∂µ

∣∣∣∣∣
λ0

Γ(N)({pj}, g, µ) = 0

where the first derivative now acts only on the explicit µ dependence of
Γ(N). Introducing the functions

β(g) ≡ µ
∂g

∂µ

∣∣∣∣∣
λ0

, γφ(g) ≡ µ
∂ logZφ
∂µ

∣∣∣∣∣
λ0
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this gives the massless version of the Callan-Symanzik equation(
µ
∂

∂µ
+ β(g)

∂

∂g
− N

2
γφ(g)

)
Γ(N)({pj}, g, µ) = 0 (13)

This equation says that we can trade the dependence of the vertex functions
on µ for their dependence on g.

6.2 Renormalisation group flows

If we now use dimensional analysis (12) for the case N = 2 (the argu-
ment generalises straightforwardly to larger N as long as we scale all the
momenta proportionally) we see that Γ(2) satisfies the Euler equation(

µ
∂

∂µ
+ p

∂

∂p
− 2

)
Γ(2)(p, g, µ) = 0

Subtracting this from the C-S equation (13)(
p
∂

∂p
− β(g)

∂

∂g
− (2− γφ(g))

)
Γ(2)(p, g, µ) = 0 (14)

This means that we can trade dependence on p, which is what we are after,
for dependence on g. In particular:

• if β(g) > 0 then p ↑⇔ g ↑ and p ↓⇔ g ↓

• if β(g) < 0 then p ↑⇔ g ↓ and p ↓⇔ g ↑

The really interesting case is when β(g) has a zero at some value g = g∗.
Then if β(g) changes sign from < 0 to > 0 as g ↑ through g∗ (as on the
left in Fig. 23), then as p → 0, g → g∗. This is called an IR stable zero.
Conversely if β(g) changes sign from > 0 to < 0 as g ↑ through g∗ (as on
the right in Fig. 23), then as p → ∞, g → g∗. This is called a UV stable
zero.

This is clearer in the explicit solution of the PDE (14): define the running
coupling g(p) as the solution of the ordinary differential equation

p
∂

∂p
g(p) = β(g(p))
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Figure 23: A beta-function with an IR stable zero (on the left) and a UV stable zero (right).
The RG flows as p→ 0 are indicated.

g

β

Figure 24: Form of the beta-function in φ4 theory for d = 4.

with the initial condition that g(µ) = g. This is called an RG flow equation.
It tells us how g(p) flows as we change p. The solution of (14) is then

Γ(2)(p, g, µ) = exp

∫ g(p)

g

2− γφ(g′)
β(g′)

dg′
Γ(2)(µ, g(p), µ) (15)

This shows how the dependence on p in the lhs gets traded for the depen-
dence on g(p) on the rhs.

Different renormalisable QFTs have different beta-functions and therefore
qualitatively different UV and IR behaviours

For example, the beta function for λφ4 theory, which we shall compute
shortly to one loop, has the forms of Fig. 24 for d = 4 and Fig. 25 for
d < 4. In the first case there is a single IR stable zero at g = 0. In the
second, this moves to g = g∗ > 0 and the zero at g = 0 becomes UV stable.
For QCD in d = 4 the beta function looks like that in Fig. 26: there is a
UV stable zero at g = 0. This is asymptotic freedom: the UV behaviour of

g

β

Figure 25: Form of the beta-function in φ4 theory for d < 4.
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g

β

Figure 26: Form of the beta-function in QCD for d = 4.

QCD can be computed perturbatively in g(p). Conversely, as p→ 0 (large
distances), g(p)→∞, which is consistent with the idea of confinement.

If the theory has a UV (IR) stable fixed point at g = g∗ then we can get
the leading behaviour of the correlation functions as p → ∞ (p → 0) by
simply setting g = g∗ in (14). Thus(

p
∂

∂p
− (2− γ∗)

)
Γ(2)(p) = 0

where γ∗φ = γφ(g
∗). This has the simple solution

Γ(2)(p) ∝ p2−γ∗φ

Thus we see that (12) becomes

G(2)(p,Λ) ∼ 1

p2

(
p

µ

)γ∗φ

or, in position space

〈φ(x)φ(0)〉 ∼ 1

|x|d−2+γ∗φ

One way to think of this is that the field φ(x), instead of having its canon-
ical dimension k(d−2)/2, instead has dimension

1
2(d− 2) + 1

2γ
∗
φ

This is sometimes called the scaling dimension of φ. The difference 1
2γ
∗
φ

between this and the canonical dimension is called the anomalous dimen-
sion.
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6.3 One-loop computation in λφ4 theory

In minimal subtraction, the dimensionless renormalised coupling is

g = λµ−ε = µ−ε
(
λ0 −

3

16π2

1

ε
λ2

0µ
−ε +O(λ2

0)

)

Then

β(g) = µ
∂g

∂µ

∣∣∣∣∣
λ0

= −εg + µ−ε
(

3

16π2
λ2

0µ
−ε +O(λ3

0)

)

= −εg +
3

16π2
(λ0µ

−ε)2 +O(λ3
0)

= −εg +
3

16π2
g2 +O(g3)

For ε = 0 we see that β(g) has the form shown in Fig. 24 with an IR stable
zero at g = 0, while for ε small and > 0, it looks like Fig. 25, and there is
an IR stable zero at

g∗ =
16π2ε

3
+O(ε2)

To find the higher order terms in ε we would have to carry the calculation
of Γ(2) and Γ(4) to higher loop order.

6.3.1 Calculation of γφ

As we have already observed, in this theory Zφ = 1 to one-loop order, so
we have to go to two loops to get a nontrivial result for γφ, which involves
the last diagram in Fig. 9.

Z−1
φ =

∂Γ
(2)
0 (p)

∂p2

∣∣∣∣∣∣∣
p2=µ2

= 1− λ2
0

3!

∂

∂p2

∫ (ddk1d
dk2/(2π)2d)

k2
1k

2
2(p− k1 − k2)2

∣∣∣∣∣∣
p2=µ2

+O(λ3
0)

The integral can be done by the methods described earlier and we get

Z−1
φ = 1 +

1

12

1

ε

λ2
0µ
−2ε

(16π2)2
+O(λ3

0)

so

γφ = µ
∂

∂µ
logZφ =

1

6

(
g

16π2

)2

+O(g3)
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and, at the IR stable fixed point g = g∗,

γ∗φ =
ε2

54
+O(ε3)

(Note that we do not need the O(ε2) term in g∗ to get this.)

For d = 4, the IR stable zero is at g = 0 and so γ∗φ = 0. This does not mean

that G(2)(p) ∼ 1/p2 as p → 0, however, since in this case g(p) → 0 very
slowly. In fact there are calculable logarithmic factors in G(2)(p), which
can be found using (15).

6.3.2 Anomalous dimension of φ2(x)

As discussed earlier, there are additional divergences in correlation func-
tions of products of operators at the same point. As an example, consider

G
(2,1)
0 (p1, p2) ≡

∫
ddy1d

dy2e
i(p1y1+p2y2)〈φ0(0)2φ0(y1)φ0(y2)〉

(The 1 in (2, 1) means that there is one insertion of φ2 in the 2-point
function.) In order to define the corresponding vertex function we should
truncate the external legs. Thus

Γ
(2,1)
0 (p1, p2) =

G
(2,1)
0 (p1, p2)

G
(2)
0 (p1)G

(2)
0 (p2)

We absorb the divergences in φ2 through the renormalisation constant Zφ2:

φ2(x) = Z−1
φ2 φ0(x)2

Hence the renormalised vertex function is related to the bare one by

Γ(2,1)(p1, p2) =
G(2,1)(p1, p2)

G(2)(p1)G(2)(p2)
= Z−1

φ2 ZφΓ
(2,1)
0 (p1, p2)

where Zφ2 is fixed, for example, Γ(2,1)(p1, p2)|(p1+p2)2=µ2 = 1, or by using
minimal substraction.

The C-S equation follows as before from the fact that this is independent
of µ: (

µ
∂

∂µ
+ β(g)

∂

∂g
− γφ(g) + γφ2(g)

)
Γ(2,1)(p1, p2, µ) = 0
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where γφ2 ≡ (µ∂/∂µ) logZφ2|λ0. Using the fact that Γ(2,1) is dimensionless,
we can trade µ∂/∂µ for −p∂/∂p. Going to the fixed point g = g∗ we
therefore find that

Γ(2,1)(p1, p2) ∼ p
γ∗
φ2
−γ∗φ (16)

as p1 ∼ p2 ∼ p→ 0. Thus we can think of φ2/(φ · φ) as having anomalous
dimension γ∗φ2.

The diagram for Γ
(2,1)
0 (p1, p2) to one loop is that shown in Fig. (21), with

the external lines truncated. The loop integral is the same as that for the
1-loop coupling constant renormalisation, so

Zφ2 = 1− 1

32π2

2

ε
λ0µ

−ε +O(λ2
0)

so

γ∗φ2 = µ
∂

∂µ
logZφ2 =

λ0µ
−ε

16π2
+O(λ2

0) =
g

16π2
+O(g2)

At the fixed point g = 16π2ε/3 +O(ε2) we therefore have

γ∗φ2 =
ε

3
+O(ε2) .

6.4 Application to critical behaviour in statistical mechanics

We have remarked earlier that the euclidean path integral∫
[dφ]e−SE [φ]/h̄

is formally very similar to the partition function in classical statistical
mechanics

Tr e−E/kBT

In fact we can make the connection more explicit. It turns out that many
aspects of the behaviour of renormalised λφ4 theory in the limit of small
renormalised mass are the same as those of the d-dimensional Ising model
near its critical point.

The Ising model is defined on a lattice. At each point x of the lattice
resides a ‘spin’ s(x) taking the values ±1. The interaction energy between
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these spins is
E[s] = −1

2

∑
x,x′

J(x− x′)s(x)s(x′)

where J > 0 is a short-ranged function. At high temperatures the system
is paramagnetic and the 2-point correlation function

〈s(x1)s(x2)〉 =
1

Z
Tr s(x1)s(x2)e

−E[s]/kT

decays as ∼ e−|x1−x2|/ξ, where ξ is the correlation length. The Fourier
transform of this is 1/(p2 + ξ−2), and so we can think of ξ−1 as being
similar to the renormalised mass m. At the temperature is reduced, ξ
increases, and, for d > 1, there is a continuous phase transition at some
temperature Tc. Below Tc the system orders: that is, if we take the limit as
H → 0 of an applied magnetic field, the 1-point function 〈s(x)〉 is non-zero.
The main point is that at Tc, m = 0.

However, the Ising model is not even a lattice field theory since the spins
take only the values ±1. On way to map it to a field theory is the Hubbard-
Stratonovich transformation. Since this is an important tool in other ap-
plications, we shall discuss it in detail. The Ising model partition function
is

Z[H] =
∑
s(x)

e

1
2

∑
x,x′

s(x)K(x− x′)s(x′) +
∑
x
H(x)s(x)

where K = J/kT and we have added a source H(x) (a magnetic field) in
order to compute correlation functions through differentiation.

Now use a gaussian integral (similar to the computation of the propagator)

e
1
2

∑
x,x′ s(x)K(x−x′)s(x′) ∝

∫ ∏
x
dφ(x)e−

1
2

∑
x,x′ φ(x)K−1(x−x′)φ(x′)+

∑
x φ(x)s(x)

where K−1(x−x′) is the matrix inverse of K(x−x′) with x and x′ labelling
the rows and columns. We can now do the sum over s(x) at each site:

∑
s(x)=±1

e(φ(x)+H(x))s(x) = 2 cosh (φ(x) +H(x))
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Thus, apart from an unimportant constant, the partition function is that
of a euclidean lattice field theory with action

S =
1

2

∑
x,x′

φ(x)K−1(x− x′)φ(x′)−
∑
x

log cosh (φ(x) +H(x))

So far this is exact. Now we take the naive continuum limit and make a
gradient expansion of the first term:

1
2

∑
x,x′

φ(x)K−1(x− x′)φ(x′) = 1
2

∫ ddp

(2π)d
φ̃(p)∗K̃(p)−1φ̃(p)

≈
∫ ddx

ad
K̃(0)−1

(
φ(x)2 + a2R2(∂φ(x))2 + · · ·

)
where K̃(p) =

∑
x e

ipxK(x) = K̃(0)(1 − R2p2 + O(p4)), so that R2 =∑
x x

2K(x)/
∑
xK(x). (R can be thought of as the range of the interac-

tion.) Similarly we expand the second term in powers of φ(x) and H(x).
After rescaling φ so that

R2a−d

K̃(0)
(∂φ)2 → (∂φ)2

we end up with the usual φ4 action, plus corrections.

S =
∫ [

1
2(∂φ)2 + 1

2m
2
0 + λ0

4!φ
4 + J(x)φ(x) + · · ·

]
ddx (17)

where

m2
0 ∝ K̃(0)−1 − 1 , λ0 ∝ ad/R4 , J(x) ∝ H(x) +O(H3)

If we ignore the corrections for the time being, we see first that the bare
mass m0 vanishes when K̃(0) =

∑
x J(x)/kT = 1. This corresponds to the

mean field approximation to the critical temperature TMF = k−1 ∑
x J(x).

The actual critical point occurs where the renormalised mass m vanishes,
and, since m2

0 < m2, we see that the true Tc < TMF . Second, the bare
coupling λ0 is small if the range of the interaction R is large. Since the
actual expansion parameter is λ0m

d−4 we see that for d < 4, if the range
of interaction R is large the corrections to mean field theory are small
except in a narrow window |m| < O(R−4/(4−d)). This is called the Ginzburg
criterion.
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However we have not yet justified the neglect of the higher order terms in
(17). These contain powers of φ higher than 4, and/or powers of ∂x higher
than 2. The important point is that, after rescaling the field, they all enter
the lagrangian with positive powers of a, near d = 4. If we consider such a
term it will have the form κ

∫ Oddx where O is some polynomial in φ and
∂, and [κ] = k−δ with δ > 0 (for d just below 4). This means that if we
now do perturbation theory in κ, the dimensionless expansion parameter
is h = κµδ, and the corresponding renormalisation group function has the
form

βh(h) = δ · h+O(h2)

This means that h = 0, or κ = 0 is an IR stable fixed point. For small
enough κ, the the IR behaviour is the same as if we took κ = 0. This is not
to say that there might not be some other behaviour for larger values of
κ. However, for the values corresponding to the nearest neighbour spin-1

2

Ising model, there is ample numerical evidence that it has the same critical
behaviour as φ4 field theory. The phenomenon that two very different
looking models have the same scaling behaviour is called universality.

However, note that in statistical physics the UV cut-off Λ ∼ a−1 is finite,
and the physical correlation functions are the bare ones. However, since,
as far as their x-dependence goes, these are proportional to those of the
renormalised theory, we can take over results from the latter.

For example, at T = Tc (m = 0) we have

〈s(x)s(0)〉 ∝ 〈φ(x)φ(0)〉 ∼ 1

|x|d−2+γ∗φ

In the statistical physics literature, the exponent γ∗φ is denoted by η.

In statistical physics, we are interested in how the behaviour close to the
critical point depends on T − Tc = δT ∝ m2

0−m2
0c. In particular, we want

to know how the correlation length ξ diverges as T → Tc, that is, how m
depends on m2

0 −m2
0c. This defines the critical exponent ν:

ξ−1 = m ∼ (δT )ν ∝ (m2
0 −m2

0c)
ν

The exponent ν is related to the scaling dimension of the composite oper-
ator φ2. The simplest, if not the most rigorous, way to see this is through
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a scaling argument: the change in the action is

δS ∝ (T − Tc)
∫
φ2

0d
dx

Since [φ2
0] = k

d−2+γ∗
φ2 , and δS is dimensionless,

[T − Tc] = k
2−γ∗

φ2 = [ξ]
−2+γ∗

φ2

so that

ν =
1

2− γ∗φ2
and, using our 1-loop result for γ∗φ2,

ν =
1

2− 1
3ε+O(ε2)

=
1

2
+

ε

12
+O(ε2) .

6.5 Large N

The φ4 theory we have been discussing is a special case of a more general
theory where the field φa(x) has N components, a = 1, . . . , N . The most
interesting case is when the lagrangian has O(N) symmetry:

L = 1
2

N∑
a=1

(∂φa)
2 + 1

2m
2
0

N∑
a=1

φ2
a + 1

8λ0(
N∑
a=1

φ2
a)

2

In critical behaviour, N = 1 corresponds to the Ising magnets, N = 2 to
XY magnets (and also a complex scalar field representing the macroscopic
wave-function in superfluids and superconductors), N = 3 to Heisenberg
magnets, and so on. It turns out that the N → ∞ limit is soluble and
nontrivial, and also is the starting point of a systematic 1/N expansion.

There are several ways of analysing this limit but we shall restrict ourselves
to the one closest to the earlier parts of this course. We must first under-
stand how to draw Feynman diagrams for general N . Write the interaction
part of the action using (yet again!) a gaussian transformation

e−(λ0/8)
∫

(
∑N
a=1 φ

2
a)

2
ddx ∝

∫
[du(x)]e

∫
[− 1

2u
2+(iλ

1/2
0 /2)u

∑
a φ

2
a]ddx
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φ

φ

a

a

u

Figure 27: Vertex between two φa fields and the auxiliary field u.

Figure 28: First few diagrams for the 2-point function. The second is O(N) relative to the
third.

We now have two types of field, φa, with a bare propagator

〈φa(x1)φb(x2)〉 = δab ∆(x1 − x2)

and u, with a propagator, in p-space, equal to 1. Denoting this by a dashed
line, the interaction vertex is as shown in Fig. 27, and takes the value iλ0.
The first few diagrams for the 2-point function are shown in Fig. 28. We
see that each time there is a closed loop of the solid lines we get a factor
N . Thus if we take the limit N → ∞, λ0 → 0 keeping λ0N fixed, only a
subset of the diagrams like those in Fig. 29 survives.

If we denote the sum of these by G(2)(p), it satisfies the equation

G(2)(p) =
1

p2 +m2
0

− λ0N

2

1

p2 +m2
0

G(2)(p)
∫
G(2)(k)

ddk

(2π)d

Figure 29: The first few surviving diagrams in the limit N →∞ with λ0N fixed.
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Equivalently

Γ(2)(p) = p2 +m2
0 + λ0N

∫ 1

Γ(2)(k)

ddk

(2π)d

Note that the last term is independent of p, so we can write

Γ(2)(p) = p2 +m2

with

m2 = m2
0 +

λ0N

2

∫ 1

k2 +m2

ddk

(2π)d

This is an equation which gives the renormalised mass m implicitly in terms
of the bare mass. The renormalised mass vanishes when

m2
0 = m2

0c = −λ0N

2

∫ 1

k2

ddk

(2π)d

Note this is negative as we mentioned earlier, corresponding to the fact
that Tc < TMF . The integral is UV divergent for d ≥ 2, but we expect this,
and it can be made finite with a regulator |k| < Λ. However, it is also IR
divergent for d ≤ 2, indicating that, even in the UV cutoff theory, starting
with any finite value of the bare mass, we can never in fact reach m = 0.
This is an example of Coleman’s theorem (also called the Mermin-Wagner
theorem in statistical physics), which states that it is impossible to break
a continuous symmetry for d ≤ 2. As d→ 2+, Tc → 0.

Introducing the notation δT = m2
0 −m2

0c as before, we see that

m2 = δT +
λ0N

2

∫ 1

k2 +m2

ddk

(2π)d
− λ0N

2

∫ 1

k2

ddk

(2π)d

= δT − λ0N

2
m2

∫ 1

k2(k2 +m2)

ddk

(2π)d

There are different types of behaviour to the solution depending on d:

• d > 4: in this case the integral must still be regulated. The integral
on the rhs is then finite at m = 0, and we see that m2 ∝ (δT ). Thus
the critical exponent ν = 1

2 , independent of d. This is typical of the
behaviour above the upper critical dimension, in this case 4.
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• 2 < d < 4: the integral on the rhs is finite, and, by dimensional
analysis, goes like md−4. The leading behaviour of the solution is now
found by balancing the two terms on the rhs, whence m ∝ (δT )1/(d−2),
and ν = 1/(d− 2).

• for d ≤ 2, as we said above, there is no solution.

In addition one can check that there are logarithmic corrections at d = 4.
These general features, if not the precise values of ν, persist to finite N .

7 From Feynman diagrams to Cross-sections

In this section we assume that we are in 3+1-dimensional Minkowski space.

Earlier, we saw that in a free field theory

〈0|T[φ̂(p′, t′)φ̂(p, t)†]|0〉 = (2π)3δ3(p′ − p)
e−i
√

p2+m2(t′−t)

2
√

p2 +m2
(18)

is proportional to the amplitude e−i
√

p2+m2(t′−t) for a particle of 3-momentum
p at time t to propagate to one of momentum p′ at time t′. That is φ̂(p)†

acting on the vacuum state creates a single particle state |p〉 of momentum
p. More precisely,

〈p′|φ̂(p)†|0〉 = δ(p− p′) .

The extra factor of (2
√

p2 +m2)−1 in (18) is accounted for by the fact
that in relativistic quantum mechanics, it is standard to use a Lorentz
invariant normalisation of the momentum eigenstates. That is, rather than
the completeness relation

∫ d3p

(2π)3
|p〉〈p| = 1

we use ∫ d4p

(2π)3
δ+(p2 −m2)|p〉〈p| =

∫ d3p

(2π)3(2p0)
|p〉〈p| = 1

where the superscript + means that we take only the zero of the delta
function with p0 > 0.
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Now consider scattering in an interacting field theory. In principle we
should try to model what goes on at CERN and consider isolated wave
packets prepared at t → −∞, allowed to interact around t = 0, and then
see what state comes out as t → +∞. In practice this is too hard and
instead we suppose that we have a large box and that as both t→ ±∞ the
interaction is switched off. Initially, in the Schrödinger picture, we have
a plane wave state |p1,p2, . . .〉(S). This evolves with the full hamiltonian
Ĥ(S), and then, as t→ +∞, we compute the transition amplitude

lim
t→∞

(S)〈p′1,p′2, . . . |e−iĤ
(S)t|p1,p2, . . .〉(S) = (S)〈p′1,p′2, . . . |Ŝ|p1,p2, . . .〉(S)

that tells us the probability of scattering from one plane-wave state into
another. Ŝ is called the S-matrix.

The way to do this is through the interaction picture. We write Ĥ(S) =
Ĥ

(S)
0 +Ĥ

(S)
1 , where the first term is the free, or non-interacting hamiltonian,

and the second part the interaction terms. Going from the Schrödinger to
the interaction picture corresponds to a unitary transformation

|Ψ〉(I) = eiĤ
(S)
0 t|Ψ〉(S) on states

Ô(I) = eiĤ
(S)
0 tÔ(S)e−iĤ

(S)
0 t on operators

Then

i
∂

∂t
|Ψ〉(I) = i

[
iĤ

(S)
0 eiĤ

(S)
0 t|Ψ〉(S) + eiĤ

(S)
0 t ∂

∂t
|Ψ〉(S)

]

= −Ĥ(S)
0 |Ψ〉(I) + eiĤ

(S)
0 t

(
Ĥ

(S)
0 + Ĥ

(S)
1

)
e−iĤ

(S)
0 teiĤ

(S)
0 t|Ψ〉(S)

= Ĥ
(I)
1 |Ψ〉(I)

We define the Û operator by

|Ψ(t)〉(I) = Û(t, t0)|Ψ(t0)〉(I)

Note that Û(t0, t0) = 1 and Ŝ(I) = Û(∞,−∞). From the above Û obeys
the equation

i(∂/∂t)Û(t, t0) = Ĥ
(I)
1 (t)Û(t, t0)

It is the dependence of H
(I)
1 on t which makes the exact solution of this

equation difficult. However we can write it as

Û(t, t0) = 1− i
∫ t
t0
dt′H

(I)
1 (t′)Û(t′, t0)
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and find a solution by iteration:

Û(t, t0) = 1− i
∫ t
t0
dt1Ĥ

(I)
1 (t1)

[
1− i

∫ t1
t0
dt2Ĥ

(I)
1 (t2)Û(t2, t0)

]

=
∞∑
n=0

(−i)n
∫ t
t0
dt1

∫ t1
t0
dt2 . . .

∫ tn−1
t0

dtnĤ
(I)
1 (t1)Ĥ

(I)
1 (t2) . . . Ĥ

(I)
1 (tn)

=
∞∑
n=0

(−i)n

n!

∫ t
t0
dt1

∫ t
t0
dt2 . . .

∫ t
t0
dtnT

[
Ĥ

(I)
1 (t1)Ĥ

(I)
1 (t2) . . . Ĥ

(I)
1 (tn)

]

= T

[
exp

(
−i

∫ t
t0
dtĤ

(I)
1 (t)

)]

where the last line is just shorthand for the one above. Putting all this
together, the transition amplitude is

(S)〈p′1,p′2, . . . |Ŝ(S)|p1,p2, . . .〉(S)

= (I)〈p′1,p′2, . . . |Ŝ(I)|p1,p2, . . .〉(I)

= (I)〈p′1,p′2, . . . |T
[
exp

(
−i

∫ ∞
−∞

dtĤ
(I)
1 (t)

)]
|p1,p2, . . .〉(I)

∝ 〈0|T
∏

j′
φ̂(p′j′)

(I)

 exp
(
−i

∫ ∞
−∞

dtĤ
(I)
1 (t)

)∏
j

φ̂†(pj)
(I)

 |0〉
In the path integral formulation, if the operators on the left and right were
in the Schrodinger picture, this would correspond to

〈
∏
j′
φ(p′j′) exp

(
i
∫
d4xL1(x)

)∏
j

φ(pj)〉0

in the free theory, since H1(x)→ − ∫
d3xL1(x). This is just the correlation

function
G(N ′+N)({p′j′}, {pj}) = 〈

∏
j′
φ(p′j′)

∏
j

φ(pj)〉

(times an overall energy-momentum conserving delta-function) in the in-
teracting theory.

However there is a slight difference. If we switch off the interaction, that is
set Ĥ1 = 0, then the states in the interaction picture do not evolve. That
is Ŝ = 1 or

(S)〈p′1,p′2, . . . |Ŝ(S)|p1,p2, . . .〉(S) = δ({p′j′}, {pj})



QFT1 60

Figure 30: Disconnected diagrams contributing to the 2 → 2 S-matrix. The arrows indicate
the flow of energy (p0). The third diagram does not contribute.

However in, e.g., the 2→ 2 case, the diagrams contributing to G(2+2) are
the first two shown in Fig. 30 (why not the third diagram?), giving

1

(p2
1 −m2)(p2

2 −m2)

(
δp1p′1δp2p′2 + δp1p′2δp2p′1

)

Thus we should cancel off the denominators in the above, to be in the
interaction picture.

When we turn on the interaction, we can write

Ŝ = 1 + iT̂

The 1 in Ŝ now corresponds, for 2 → 2 scattering, to the sum of discon-
nected diagrams in G(2)(p1)G

(2)(p2), where G(2)(p) is the full renormalised
2-point function. Note that we are now saying that the physical particle
states are created and destroyed by the renormalised field operator. By
the above argument, we should however multiply this by

(p2
1 −m2)(p2

2 −m2)G(2)(p1)G
(2)(p2)

and then take the limit p2
1, p

2
2 → m2, since the external particles are on mass

shell. However, since the field renormalisation is defined by the requirement
that the residue of the pole in G(2)(p) at p2 = m2 is 1, we get just the sum
of energy-momentum conserving delta-functions as before.

However the 1 term in Ŝ corresponds to no scattering, or to looking exactly
in the forward direction, down the beamline at CERN. To see scattering
we need to look at the other term. The first diagram contributing to the
matrix element of T̂ in φ4 theory is that in Fig. 31, with all possible vacuum
corrections on the external legs. Once again, however, the corrections are
cancelled on mass shell by renormalisation, and the remaining external
propagators are cancelled by the use of the interaction picture. That is,
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Figure 31: Diagrams contributing to the 2→ 2 T -matrix to O(λ). The loop corrections on the
extenral legs are exactly cancelled by mass and field renormalisation.

the amplitude for the 2 particles to propagate up to the time where they
first interact is unity in this picture. This is an example of the main
important result:

The matrix elements of iT̂ are given by the on-mass-shell values of the
truncated renormalised connected N-point functions

i〈p′1,p′2, . . . |T̂ |p1,p2, . . .〉 =
G(N ′+N)({p′j′}, {pj})c∏
j′ G(2)(p′j′)

∏
j G(2)(pj)

∣∣∣∣∣∣
p′
j′

2=p2j=m
2

×δ4(
∑
j′
p′j′−

∑
j

pj)

We have not attempted to show this in general (the full argument requires
the use of the so-called LSZ formalism and is cumbersome.) For example,
in λφ4 theory, we have simply

〈p′1,p′2|T̂ |p1,p2〉 = λ (2π)4δ4(p′1 + p′2 − p1 − p2) +O(λ2)

The transition probability is the square of this, which involves[
δ4(p′1 + p′2 − p1 − p2)

]2
= δ4(0)δ4(p′1 + p′2 − p1 − p2)

If we are careful, we should identify the divergent quantity (2π)4δ4(0) as
V T where V is the volume of the box, and T the total time for which the
interaction is switched on. We divide this by T to get a transition rate. If
we are in a box, the allowed 3-momenta are quantised in units of (2π)3/V .
In order to go from our relativistic normalisation of the states

〈p′|p〉 = 2p0δ3(p− p′)

to discrete counting where

〈p′|p〉 = δp,p′
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that is ∫ d3p

(2π)3
→ 1

2p0V

∑
p
,

we need to divide the transition rate by
∏
j′(2p

′0
jV )

∏
j(2p

0
jV ).

According to Fermi’s golden rule, we now multiply by the density of final
states

V d3p′1
(2π)3

V d3p′2
(2π)3

and normalise against the total incident flux v12/V , where v12 is the relative
velocity, to get the elastic differential cross-section

dσ =
V

v12

V (2π)4δ4(p′1 + p′2 − p1 − p2)∏
j′(2p′

0
jV )

∏
j(2p0

jV )

V d3p′1
(2π)3

V d3p′2
(2π)3

(
λ2 + · · ·

)

Note that all factors of V cancel.

In the centre of mass frame we can work out p1, . . . , p
′
2 in terms of the total

centre of mass energy E = 2
√

p2
1 +m2 and the scattering angle θ. After

some algebra we find that

δ4(p′1 + p′2 − p1 − p2)d
3p′1d

3p′2 ∝ sin θdθdφ = dΩ

and the differential cross-section is

dσ

dΩ

∣∣∣∣∣
CM

=
|T |2

64π2s

where s = (p1 + p2)
2 = E2. This formula is true in general for the elastic

scattering of scalar particles of equal mass. In our case T = λ + O(λ)2.
Note that to lowest order this is independent of θ (there is only S-wave
scattering) but to higher orders this is no longer the case.

7.1 The S-matrix: analyticity and unitarity

We have shown that it useful to write Ŝ = 1 + iT̂ . However Ŝ is unitary,
ŜŜ† = Ŝ†Ŝ = 1, so

T̂ †T̂ = i(T̂ † − T̂ )
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p/2 + k

p/2 − k

Figure 32: One loop contribution to T̂ . To get the imaginary part, put the internal lines on
mass shell.

Thus, although we saw, in our example, that to lowest order T̂ ∼ λ is real,
this shows that to higher orders it has an imaginary part. In fact if we
insert a complete set of multiparticle states |k1,k2,k3, . . .〉, the diagonal
matrix element of left hand side between 2-particle states is

∑
{kj}
〈p1,p2|T̂ †|{kj}〉〈{kj}|T̂ |p1,p2〉

The summand here is the square of the transition amplitude, that is the
cross-section for p1 +p2 →

∑
j kj. Hence the lhs is proportional to the total

cross-section, σtot, for 2 particles → anything. The rhs, on the other hand
is the imaginary part of the forward (that is (p′1, p

′
2) = (p1, p2)) scattering

amplitude. This is the optical theorem.

It is interesting to see how this works in λφ4 theory. The O(λ2) contribution
to the matrix element of T̂ is given by Fig. 32. In the CM frame we have

M ≡ 〈p′1,p′2|iT̂ |p1,p2〉 = iλ+

(iλ)2

2

∫ dk0d
3k

(2π)4

i2

((k0 − 1
2E)2 − k2 −m2 + iε)((k0 + 1

2E)2 − k2 −m2 + iε)

where E = p0
1 + p0

2 is the total CM energy.

Now think about doing the k0 integral by contour integration. The poles
are at k0 = 1

2E ±
√

k2 +m2 ∓ iε and k0 = −1
2E ±

√
k2 +m2 ∓ iε. Their

positions are shown in Fig. 33 for E < 2m. In that case we can complete
the contour (in either half-plane): we pick up a factor i from Cauchy’s
theorem, so the overall contribution to M is still real. It is also analytic
in E, since we can always move the contour away from the poles, and the
integral is uniformly convergent.
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Figure 33: Position of the poles in the complex k0-plane for E < 2m. The integration contour
is indicated.

Figure 34: Position of the poles in the complex k0-plane for ImE > 0 and ReE continued
> 2m. The two central poles pinch the integration contour as ImE and ε→ 0.

Figure 35: Position of the poles in the complex k0-plane for ImE < 0 and ReE continued
> 2m. The two central poles now pinch the contour in the opposite sense.
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Figure 36: Analytic properties of the T -matrix in the complex s-plane. There are branch cuts
starting at s = 4m2 and s = −t. In between, the function is real on the real axis.

However if we try to increase E past 2m the poles (almost, apart from the
iεs) collide. If we first give E an imaginary part E → E + iδ and then
increase the real part through 2m, then, for a given k, the contour gets
pinched as δ, ε→ 0. For δ → 0+ it gets pinched as in Fig. 34, for δ → 0−
as in Fig. 35. This tells us that M is non-analytic as δ → 0, and in fact
gets an imaginary part. If we take the path with δ > 0 and then let δ → 0
we end up with an imaginary part +ImM ; if we take the path with δ < 0
we get −ImM , so there is a discontinuity 2iImM . The magnitude of this
is found by the values of the integrand where the poles collide, namely it
is given by

1
2λ

2
∫ dk0d

3k

(2π)4
δ+((k0 + 1

2E)2 − k2 −m2) δ+((k0 + 1
2E)2 − k2 −m2)

This corresponds to inserting a complete set of intermediate states (only
2-particle states are allowed to this order) and so gives T̂ †T̂ , consistent
with the optical theorem.

The analyticity properties of the matrix elements M of T̂ we saw in this
example are in fact quite general and very powerful. It is usual to express
M in terms of the relativistic invariant s ≡ (p1 + p2)

2 = E2
CM. Then M(s)

is an analytic function of s, real on the real axis for 0 < s < 4m2, but it
has a branch cut beginning at s = 4m2 (see Fig. 36). For s > 4m2 the
physical value of M is given by its value just above the cut. The point
s = 4m2 is called the 2-particle threshold. Of course for physical on-shell
incident particles we must have ECM ≥ 2m, so s ≥ 4m2. This corresponds
to the value of s at which 2 → 2 scattering is possible. However there
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p
1

p
2

p’
1

s

Figure 37: The s and t-channels for 2→ 2 scattering.

π
+

π+ p

p

Figure 38: The T -matrix for π+p→ π+p scattering in the s-channel, when analytically contin-
ued to the u-channel, describes pp̄→ π+π−.

are higher thresholds at s = 9m2, etc., where 2 → 3 particle production
becomes possible. These add even more branch cuts on top of the first one.
However, we can say more than this. In general M is an analytic function
of the relativistic invariants s = (p1 +p2)

2, t = (p1−p′1)2, and u = (p1−p′2)2

(see Fig. 37). It is easy to check that

s+ t+ u = 4m2

and, just as there is a branch cut starting at s = 4m2 there is also one
starting at u = 4m2, that is s = −t. So for fixed t > 0 the analytic
structure of M(s) is as shown in Fig. 36. The physical value in the u-
channel, that is for scattering 1+2′ → 1′+2, is the one below the left-hand
branch cut in the s-plane.

This is important for the scattering of real particles. If, for example, the
s-channel corresponds to elastic pion-proton scattering π+p → pπ+, then
the u-channel corresponds to proton-antiproton annihilation into a π+π−

pair. See Fig. 38. The fact that the amplitude for one is the analytic
continuation of the other means that in principle we can predict the cross-
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section for the second process if we know the amplitude for the first.

8 Path integrals for fermions

We have seen that correlation functions computed with the path integral
correspond to vacuum expectation values of time-ordered products of quan-
tum field operators, for example,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = Z−1
∫

[dφ]φ(x1)φ(x2)φ(x3)φ(x4) e
iS[φ]

= 〈0|T[φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4)]|0〉

When t1 = t2 > t3 = t4 we interpret this as creating particles at x3 and
x4 at time t3 and destroying them at t1. However in the path integral the
φ(xj) are commuting c-numbers, so that

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 〈φ(x2)φ(x1)φ(x4)φ(x3)〉

This tells us that the initial and final quantum states are symmetric under
the exchange of 3 and 4: the particles we are describing must be bosons.

How, then, are we to describe fermions using the path integral? The answer
is to define a new kind of integral over anti-commuting fields, also called a
Grassmann integral. The idea is that the only mathematical properties of
ordinary integration that we actually need to use in manipulating ordinary
path integrals are the fact that it is a map from functions to the complex
numbers which is linear:∫

(αf(x) + βg(x))dx = α
∫
f(x)dx+ β

∫
g(x)dx

and that it satisfies the conditions that we can shift variables and rescale
variables in integrals from −∞ to ∞:∫ ∞

−∞
dx f(x+ c) =

∫ ∞
−∞

dx f(x) (19)∫ ∞
−∞

dx f(αx) = α−1
∫ ∞
−∞

dx f(x) (20)
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Let first consider a finite set of anti-commuting numbers (θ1, . . . , θn), sat-
isfying

θjθk = −θkθj
Note that this immediately implies that θ2

j = 0, and therefore the Taylor
expansion of any function f(θ1, . . . , θn) terminates after a finite number of
terms, for example

f(θ) = f0 + f1θ

f(θ1, θ2) = f00 + f10θ1 + f01θ2 + f11θ1θ2

Now let us try to define the ‘integral’ of f(θ) as a linear map from functions
to the complex numbers. It should satisfy the shifting property (19)∫

dθ f(θ + θ′) =
∫
dθ f(θ)

that is ∫
dθ(f0 + f1θ + f1θ

′) =
∫
dθ(f0 + f1θ)

This means that ∫
dθ 1 = 0

We are in fact free to choose the value of
∫
dθ θ and usually set∫

dθ θ = 1

Note however that∫
dθ f(αθ) =

∫
dθ f1αθ = α

∫
dθ f(θ)

as compared with (20) for the case of ordinary integration.

In path integrals we need to understand how to go gaussian integration.
Consider therefore ∫

dθ1 . . . dθn e
− 1

2

∑n
j,k=1 θjMjkθk

(Note that the matrix M has to be antisymmetric for this to make sense.)
Take the case n = 4. Expanding out the exponential we have

∫
dθ1 . . . dθ4

1− 1
2

∑
jk

θjMjkθk + 1
8(
∑
jk

θjMjkθk)(
∑
j′k′
θj′Mj′k′θk′) +O((

∑
jk

θjMjkθk)
3)
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The first two terms don’t have enough factors of θ1 . . . θ4, and they integrate
to zero. The 4th and higher terms all have at least one θj raised to a power
≥ 2, and so vanish. The remaining contribution is∫

dθ1 . . . dθ4 [θ1θ2θ3θ4M12M34 + θ1θ3θ2θ4M13M24 + · · ·]

∝
∫
dθ1 . . . dθ4 θ1θ2θ3θ4 [M12M34 −M13M24 + · · ·]

= M12M34 −M13M24 +M14M23

=
√

detM

This is to be compared with the ordinary gaussian integral∫
dx1 . . . dxn e

− 1
2

∑n
j,k=1 xjMjkxk ∝ (detM)−1/2

The main point, however, is that if we add sources:

Z[J ] ≡
∫
dθ1 . . . dθn e

− 1
2

∑n
j,k=1 θjMjkθk+

∑
j Jjθj

(note that the J ’s anticommute as well!) we can complete the square as
before to find that

Z[J ] =
√

detM e
1
2

∑
jk Jj(M

−1)jkJk

Taking derivatives wrt the sources we then find that

〈θ1θ2θ3θ4〉 = (M−1)12(M
−1)34 − (M−1)13(M

−1)24 + (M−1)14(M
−1)23

= 〈θ1θ2〉〈θ3θ4〉 − 〈θ1θ3〉〈θ2θ4〉+ 〈θ1θ4〉〈θ2θ3〉

This is the fermionic version of Wick’s theorem: note the minus sign!

8.0.1 Relativistic lagrangians

By analogy with the bosonic case, our first guess at writing down a Lorentz-
invariant action for a field theory describing a single species of fermion
might be

L ∝ ψ(−∂2 +m2)ψ

where ψ(x) is an anticommuting field. But this is zero because the operator
−∂2 + m2 is symmetric. If it has to be antisymmetric then we need first
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derivatives, like ψ∂ψ. But this is not Lorentz invariant. One way to solve
this is by adding more components to the field. For example in d = 4 we
can give it 2 components (ψ1, ψ2) and we can then show that the Weyl
lagrangian

LW =
2∑

j,k=1

ψj(σµ∂
µ)ψk

where σµ = (1, σ) and σ are the Pauli matrices, is indeed Lorentz invariant,
as long as (ψ1, ψ2) transforms like a spinor. This describes massless spin-1

2

particles (like massless neutrinos.)

Note that it is still hard to add a mass term. The easiest way is to double
the number of components again:

LD = ψTL(σ · ∂)ψL + ψTR(σ · ∂)ψR + imψTLψR

= Ψ(γ · ∂ −m)Ψ

where Ψ = (ψL, ψR), and Ψ = ΨTγ0. This gives free massive spin-1
2 parti-

cles, and their antiparticles, satisfying the Dirac equation. Note that the
propagator for such a particle in field theory is (iγ · p + m)−1, which is a
4× 4 matrix.

8.0.2 An application in condensed matter physics

Grassmann integrals are also very useful in condensed matter physics, not
only in describing non-relativistic electrons.

Suppose that we have a single non-relativistic particle in a potential, whose
wave function satisfies the time-independent Schrodinger equation

Ĥφ = (− ∂2 + V (r))φ(r) = Eφ(r)

We are interested in the Green’s function

G(r1, r2;E) =
[
Ĥ − E]−1

]
r1,r2

which we can write as a (bosonic) path integral

G(r1, r2;E) = Z−1
∫

[dφ]φ(r1)φ(r2)
∗e−

1
2

∫
φ∗(−∂2+V (r)−E)φddr



where

Z =
∫

[dφ][dφ∗]e−
1
2

∫
φ∗(−∂2+V (r)−E)φddr = ( det(−∂2 + V (r)− E))−1

(Note that we get det−1 rather than det−1/2 because a complex field has
two components. In systems containing impurities, V is random, and in
many cases it is sufficient to calculate average properties of G (or |G|2) over
some ensemble of random potentials. This is difficult because V occurs in
both the numerator and denominator. A way around this is to observe
that if we consider the corresponding Grassmann integral∫

[dθ][dθ∗]e−
1
2

∫
θ∗(−∂2+V (r)−E)θddr

we get Z = ( det(−∂2 + V (r)− E))+1. Hence we can write

G =
∫

[dφ][dφ∗]φ(r1)φ(r2)
∗e−

1
2

∫
φ∗(−∂2+V (r)−E)φddr ·

∫
[dθ][dθ∗]e−

1
2

∫
θ∗(−∂2+V (r)−E)θddr

=
∫

[dφ][dφ∗][dθ][dθ∗]φ(r1)φ(r2)
∗e−

1
2

∫
(φ∗(−∂2+V (r)−E)φ+θ∗(−∂2+V (r)−E)θ)ddr

In this form it is easy to perform an average over V . For example, if it has
a gaussian distribution we get for each value of r,

∫
e−(V 2/2σ+V (φ∗φ+θ∗θ)) dV ∝ e(σ/2)(φ∗φ+θ∗θ)

2

The action for this field theory is invariant under global ‘rotations’ which
take φ into ψ:

φ(r) → φ(r) + εθ∗(r)

θ(r) → θ(r)− εφ∗(r)

where ε∗ is a Grassmann number. This is an example of a supersymmetry–
non-relativistic particles in a random potential are described by a super-
symmetric φ4 field theory!
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