
Notes on large N .

The O(N)-symmetric generalisation of the Ising field theory is based on an
N -component field φj with action
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The cases N = 2 and N = 3 correspond to the XY and Heisenberg models
respectively. The mean field theory for this model yields critical exponents
which are independent of N , but the RG below d = 4 gives N -dependent
results, because, as can easily be checked, the OPE coefficients depend on
N .

The limit N →∞ may be rather unphysical but it turns out to be exactly
solvable. There are several ways to derive this. The simplest is to observe
that, by the central limit theorem, the random variable φ2 ≡ ∑N

j=1 φ2
j should

have a normal distribution in the large N limit. This means in particular
that the fourth cumulant (φ2)2−3〈φ2〉φ2 vanishes, so we can replace the last
term in the action by 3λ0〈φ2〉∑N

j=1 φ2
j . This makes the action gaussian, with

an effective (mass)2

m2
R = m2

0 + 6λ0〈φ2〉
This last factor can then be computed self-consistently using the rules of
gaussian integration:

〈φj(0)2〉 =
∫
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1
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ddk

(2π)d

where we have included a UV cut-off. Thus

m2
R = m2

0 + 6λ0N
∫
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We see that to get a non-trivial large N limit we actually have to let λ0 → 0
in such a way that λ0N is fixed.

The critical point is when m2
R = 0, that is

m2
0 = m2

0c ≡ −6λ0N
∫
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ddk
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Note two things about this: (a) the bare (mass)2 is negative at the critical
point: this reflects the fact that the real Tc is less than its mean field value,
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since the fluctuations act to disorder the system; (b) for d ≤ 2 the integral
is IR divergent, so m2

0c → −∞ and Tc is pushed all the way to zero. This
is an example of the Mermin-Wagner-Coleman theorem that says that a
continuous symmetry cannot be spontaneously broken in d ≤ 2 dimensions.

If we let t ≡ m2
0 −m2

0c ∝ T − Tc then we have

m2
R = t + 6λ0N
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ddk

(2π)d

= t− 6λ0Nm2
R

∫
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k2(k2 + m2
R)

ddk

(2π)d

We now see the importance of d = 4. For d > 4 the last integral is finite as
m2

R → 0, but it is strongly dependent on Λ, and we find, as t → 0,

m2
R ∼ t−O(m2

Rλ0NΛd−4)

so that m2
R ∝ t. This implies that the correlation length ξ = m−1

R ∝ t−1/2 so
the critical exponent ν = 1

2
, the mean field value.

For 2 < d < 4, on the other hand, the integral is UV convergent and we
can remove the cut-off. In that case, by dimensional analysis,

m2
R = t−O(md−2

R λ0N)

As mR → 0 the second term on the rhs dominates the lhs so the two terms
on the rhs must balance: mR ∝ t1/(d−2), so

ν = 1/(d− 2)

There are interesting logarithmic corrections for d = 4.
It is possible to use the large N limit as the basis for a systematic 1/N

expansion of the critical behaviour, which complements the ε-expansion.
Large N limits are also very important in systems with other symmetries,

for example SU(N), but they tend to be much more difficult to analyse.
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