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Hints for the Exercises

The exercises in this book were designed with a number of aims. Some
merely repeat the arguments of the text, with variations, to ensure you have
understood them. Some are open-ended, intended to guide you into the
literature should you decide to follow them further. Some are deceptively
simple, others technically difficult. Over the years, I have received a number
of queries, particularly about some of the latter. The hints below should

help.
John Cardy, Oxford, 2002.
Chapter 1.
1.1 Note that the variables 7(1 4 s(r)) take the values 0 or 1 according to

1.2

1.3

whether there is (is not) a particle of type A. So the interaction between
the A atoms can be written 3, Jaa(r — r')5(1 + s(r))5(1 + s(r")).
Similarly for the others. Expanding this out, you’ll find the hamiltonian
for an Ising model, with some effective exchange interaction J(r — r')
and some effective magnetic field. Ising critical behaviour should occur
when the effective magnetic field vanishes, at some critical temperature,
as long as J > 0.

The first part is standard. On a triangular lattice you can’t perform
the same trick. If you try to find the lowest energy state you’ll find
there are many of them. This is an example of a fully frustrated system.
In fact, at zero temperature, this model is critical, in the sense that the
spin-spin correlations decay as a power of the separation.

This question is supposed to test how you would answer an experimen-
talist who came and said “But my system isn’t a spin—% Ising model, it
has spin (eg) g.” You can’t map the problems exactly, but you can, for



14

example, compare the first terms in the high-temperature expansion of
their susceptibility in powers of 1/kgT.

Have some coins (eg pennies, yen, or whatever is your local currency)
available and draw some pictures of the square lattice so that the di-
ameter of a coin is slightly larger than the lattice spacing (but smaller
than 1/2x the lattice spacing.) You’'ll see that there are two distinct
configurations which minimise the energy. Even though you cannot
map this problem exactly onto a nearest neighbour Ising model, the
problems have the same symmetry. The last part of the question is
to test your knowledge of Bragg scattering. What is the size of the
effective unit cell above and below the critical temperature?

Chapter 2.

2.1

2.3

24

2.5

2.6

2.7

Feynman’s inequality comes from (e*X) > e/X) taking () = (-)3 and
X = —H+H'. See Feynman, Statistical Mechanics, p. 233 (Benjamin).

You can express the relevant integrals as Bessel functions of the form
[ cos™ Be?*59df. but, since you only need the behaviour for small A to
understand the transition, this merely confuses things.

If the uniform magnetisation is M and the staggered magnetisation is
M, then, in the mean-field approximation, the magnetisation on one
sublattice is (M + M') and on the other is $(M — M’).

Asin the text, to get the Landau exponents you do not need the explicit
forms for all the coefficients in the expansion of the free energy, just
which ones vanish.

If you think about it, all that changes relative to the case considered in
the text is that (2.10) becomes f ~ tM +O(M?), so that the mean-field
t-dependence of the free energy is modified.

(2.15) still holds, but now M — My as r — oo. This looks too hard to
solve, but once again you can linearise, this time about M = M,, for
large 7.



2.8

This question is in the pure spirit of Landau — what can you get, making
the weakest possible assumptions? Think of Q as a symmetric traceless
3 X 3 matrix, and write down all the rotationally invariant quantities
you can think of. For example, at second order there is Tr (Q)%. Are
there any at third order? It doesn’t matter that you don’t know the
microscopic values of the coefficients.

Chapter 3.

3.1

3.2
3.3

3.4

3.5

3.6

This is sometimes called a decimation transformation. You can make
the algebra hideous or easy depending on how smart you are. (For
example if you write e*¥2 = cosh K(1 + tanh Ks;s,) and use the
fact that Trs? = 0 or 2 depending on whether n is odd or even, then
the traces are much easier.) Make sure you have all the fixed points,
including the antiferromagnetic one.

Ditto: write eX%1s2 as 1+ (ef — 1)d,,5,.

If the two largest eigenvalues of the transfer matrix are Ay > Ay, then
f = —InAy and 7' = In(Ag/Ay).

This is one of those open-ended questions. To check your answers, you
might want to look at the article by V. Privman, P. C. Hohenberg, and
A. Aharony, in Phase Transitions and Critical Phenomena vol. 14, eds.
C. Domb and J. Lebowitz (Academic Press, London 1991).

Just work out dg}/d¢ as an expansion in the gs, and express the gs back
as an expansion in the g¢'s, working throughout to second order. See
F. Wegner in Phase Transitions and Critical Phenomena vol. 6, eds. C.
Domb and M. S. Green (Academic Press, London 1976).

Go through the manipulations on pp. 56-57, and integrate by parts
until you get an integral of the form [2°s~'g(™(s)ds. Then estimate
this (carefully!)

Chapter 4.

4.1

This is a matter of writing the scaling form for the free energy as in
(3.28), and deciding what variable you are allowed to expand in. The
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4.2

4.3

4.4

4.5

4.6

5.1

5.2

point is that both scaling variables are proportional to ¢ as you move
away from the critical point, at fixed vacancy potential. The second
part comes from differentiating the scaling form of the free energy with
respect to the correct variable.

The easiest way to compute the susceptibility is as 3>, ;(s;s;), where the
correlation function can be computed exactly from the high-temperature
expansion, that is, writing e®%%+1 o (1+1zs;s;11), expanding out, and
taking the trace, when all but a few terms vanish. The answers will
depend on the boundary conditions.

The quantities &(L,t), £(t) and L all have the dimensions of length,
where £(t) ~ |t|7” is the correlation length at reduced temperature ¢
in the infinite system. So it should be easy to write down a scaling
relation between them, just on the basis of dimensional analysis. Now
suppose you have found numerical data on £(L,t) for various values of
L and t. What is the most efficient and accurate way to extract v?
When you have done your best, look at M. N. Barber, in Vol. 8 of
Domb and Green.

This involves generalising equations like (4.15,4.16) to the logarithmic
case.

The hint is already given in the question: this is still a delicate calcu-
lation! See I.B. Ferreira, A. R. King, V. Jaccarino and J. Cardy, Phys.
Rev. B 28, 5192, 1983.

For the second part, see E. Brézin and J. Zinn-Justin, Nucl. Phys. B
257, 867, 1985.

You can save yourself a huge amount of labour here by realising, in
analogy with the remark at the bottom of p. 98, that only a few OPE
coefficients need actually be computed. The relevant operators now are
¢; with 1 < j < 4. The last part goes in analogy with Sec. 5.6.

As on p. 105, you can simply generalise the OPE coefficients by first
computing the O(n) term, then comparing with the case n = 1. The
large n calculation is analogous to that on p. 106, except that now

£ =1+ 0((8%?).



5.4

9.5

5.6

This requires that (a) you first do a calculation like that in Sec. 5.6:
this is actually easier, because £ ~ e%; then (b) you look at (5.62) when
d=4.

This one is a bit more sophisticated: note that the operator as written
transforms irreducibly under O(3) (according to the [ = 2 representa-
tion), so that its OPE with (S?)? can only have the same combination
of quantities on the RHS. This makes the calculation a lot easier: you
only have to work out the coefficient of (say) S? on the RHS and the
others are all determined. Once you have the OPE coefficient, the rest
is as before.

This is a nice example. The only danger is in trying to expand in
powers of € at the wrong point in the calculation: don’t do this: just
assume that the RG equations are exact.

Chapter 6

6.1

6.2

6.3

6.4

The first part just generalises the calculation on p. 115 to the case
p # 1. Then use (3.55). To work out the nature of the phase for
T < T,, observe that the coefficient of the cospf term grows large,
so that only certain values of # are important. The last part involves
comparing T}, with Txp. The classic reference for all of this is José,
Kadanoff, Kirkpatrick and Nelson, Phys. Rev. B 16, 12, 1977.

The equations of Sec. 6.3 now become only true mod p. This used to
be an industry: see R. Savit, Rev. Mod. Phys. 777

Just realise that K now has non-trivial dimensions so that, when it is
expressed in terms of J, there is now a non-zero power of a. This gives
a non-zero term in dK/df. Now just assume (and justify afterwards, for
small €) that the other terms in the Kosterlitz equations are unmodified.
See J. Cardy and H. Hamber, Phys. Rev. Lett. 45, 499, 1980.

The hint in the question should be enough. This is the simplest way 1
know of to get the first order correction to the magnetic exponent, but
see, eg, Amit’s book (second edition) for the field-theoretic method.
The analogous result for the cubic symmetry breaking term in part
two of the question has never been published to my knowledge.



6.5

One of those disarmingly simple questions if you know how — just write
down the form of the first couple of terms in the beta-function!

Chapter 7

7.1

7.2

7.3

7.4

7.5

7.6

Start with (7.3) but now impose the boundary condition that M — M,
as z — 00.

Starting from the RG equations (7.8), linearised about the fixed point,
write down the analogue of (3.25) but for the total free energy, then
break it up into parts proportional to V', A, etc, thus deriving scaling
forms for the singular parts of f,, f,,.... Then differentiate wrt the
bulk parameters.

In the bulk, the calculation of the 2-point correlation function is given
on p. 115. You can think of this as the exponential of the energy
between a + charge at r; and a - charge at r,. With the boundary,
each of these charges has its image (either of the same or opposite
sign, depending on the boundary conditions.) So altogether there are
4 charges and you have to work out their interaction energy (which is
just the sum of the pairwise energies) and exponentiate the result. Now
you can let 71 and ry approach the boundary (you should keep them a
distance O(a) away, otherwise the answer might diverge), then you can
work out the dependence on 715.

The answer is simple, but then try to understand what happens as J;
gets large. Also, what happens for d = 3 in the XY model?

This involves solving Laplace’s equation with Dirichlet boundary con-
ditions and a unit charge near (not at) the apex of the wedge. You
need only work out the behaviour of the solution as r — oo.

This is a hard problem: you have to modify the arguments of pp. 142-3
at several points. To check your answer, look in the review by Diehl in
Domb and Lebowitz, vol. 10.



Chapter 8

8.1

8.2

8.3

8.4

8.5

8.6
8.7

For a given z, you have to work out the probability that a given site j is
occupied and has exactly n; spins to the left of it until the first vacancy
is reached, and ny spins to its right. This should be multiplied by the
susceptibility of this site, > ;(s;s;), where the correlation function is
the one for a finite chain (see Ex. 4.2). Now sum over n; and ns.

The operator E,(r)E(r) on p. 149 gets replaced by ¥,/ (r — r')=4=°
E,(r)Ey(r"). Work out its 2-point function, as in Sec. 4.3, to get at
its scaling dimension and hence its RG eigenvalue. The second part is
similar, but the impurities are now perfectly correlated in the imaginary
time direction.

This is a delicate calculation. You have to use a version of (3.62) with
another variable included, representing A. You have to integrate (8.17)
and (8.19) first. It is worth doing this for general n — you should find
that the Inln |¢| behaviour is specific to n = 0.

For n = 0 there is degeneracy in the one-loop RG equations, and it is
necessary to go second order. There is then a fixed point, of O(e/?),
first found by Khmelnitski. However, this is not the question. You are
asked to consider n replicas of the O(m) model, so now there are two
labels to think about. Have fun!

After replicating, and averaging over ¢(r), you should end up with
an effective interaction o h?, Y azpcosp(f, — 0y). Now work out the
two-point function of this operator, in the limit when A, = 0.

See J. Cardy, J. Phys. A, 25, L201, 1992.

Open-ended. See the Aharony, Hohenberg and Privman review referred
to above.

Chapter 9

9.1

If the jth segment is represented by a vector a; of length a, then, if one
end is fixed at the origin, the position of the end of the jth monomer is
r; = YJ_; a;. The mean square end-to-end distance is then ry, and the



9.2
9.3

9.4

9.5

9.6

9.7

radius of gyration squared is (1/N?) >, _;(r; —r;)?. Their averages are
easy to work out since (a;-a;) = a?d;;. The calculation for a closed loop
is slightly more tricky since ry = Zfil a; = 0. Impose this constraint
using the exponential integral representation of a delta-function.

(9.2) gets replaced by u'a® Y, ; , 6@ (r; — ;)6 (x; — ry).

Label two points on a given loop. Then you get a pair of mutually
avoiding walks between the two points. For each distinct loop, how
many distinct such pairs of walks do you get? If the lengths of the walks
are Ny and Np, and the number of such pairs is p(Ny, No), in the first
part you worked out Yy, n,—nP(N1, N2). Now write a scaling form
for p(IN1, N2) when N; and N, are both large and = = N;/N; is fixed.
Convince yourself that the scaling function is peaked around z = 1
with a width of O(1). Use this to compare with Yy, 4 n,—n P(N1, N2)
and hence work out p(N/2, N/2).

The energy operator in the O(n) model is E(r) ~ s(r) - s(r’), defined
on the bond (r,r'). Show that E gives the local monomer density in
this model. Write down the scaling form for (sEEs) using (3.59). ¢
couples to the distance r15 between the two E operators, so that large
q corresponds to small r5. In this region you can use the form of the
OPE E(ry).E(re). The leading non-trivial term on the RHS is again
E, and using (5.6) you can then work out the dependence on 715 and
hence on q.

The new feature is that you have to take the inverse Laplace transform
wrt the fugacity x in order to get predictions for large but fixed N.

You have to work out the OPE of ¢(?) with the ¢4 = (S?)? operator of
the O(n) model. Two of the Ss in this contract onto two of the Ss in
#®). How many ways are there of doing this?

The first part just involves taking the inverse Laplace transform wrt ¢.
Now the specific heat is given by an integral over the two-point function
of the energy density. Assume that dimensional reduction holds for
this, ie as a function of 15 it is the same as the two-point function in a
model in d — 2 dimensions in which conventional hyperscaling holds, so
that you can write down a scaling form for this 2-point function whose
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integrated form in d — 2 dimensions agrees with hyperscaling. Now
integrate up in d dimensions to get the specific heat of the branched
polymer model.

Chapter 10

10.2

10.3

10.4

10.5

10.6

Such higher-order F'D relations are not often discussed in the literature,
but there is an infinite number of them!

Obviously such terms have to involve higher powers of S and/or deriva-
tives. An example is S?V2S.

You have to argue that the limits v — 0 and w — 0 do not commute.

Write down dynamic scaling for G and compare this with the expected
behaviour for p > p..

Just a matter of modifying the argument on p. 201. You should find
d. = 2.

Chapter 11

11.1

11.2

11.3
11.4

11.6

The mathematical way to do this is to show that the metric ds? =
>°,.(dr*)? can be written as some scalar function of 7 times 3, (dr')?.

The inversion r — r’ with ' = (r — Ry)/|r — Ry|? sends the sphere
Ir| = |Ry| to a plane a distance 1/(2Ry) from the origin. Then apply
(11.3). See T. W. Burkhardt and E. Eisenriegler, J. Phys. A 18, L83,
1985.

Use z — 2/ = (L/7)Inz in (11.11), then the ideas of Chapter 7.
Use 2z — 2/ = 2/ in (11.11), then the ideas of Chapter 7.

Use the standard statistical mechanics formulas for the grand canonical
ensemble, with a dispersion relation ¢, = |k|.



