Solutions 2

1. Use the transformation $w=(L / 2 \pi) \log z$ as for the 2-point function, and the fact that in the plane $\left\langle\phi_{i}\left(z_{1}\right) \phi_{j}\left(z_{2}\right) \phi_{k}\left(z_{3}\right)\right\rangle=c_{i j k} /\left(\left(z_{1}-z_{2}\right)^{\Delta_{i}+\Delta_{j}-\Delta_{k}} \ldots\right)$. On the cylinder, taking $w_{2}=0$, and $w_{1}=u_{1}+i v_{1}, w_{3}=u_{3}+i v_{3}$, with $u_{1} \ll-L, u_{3} \gg L$, we find after some algebra

$$
\begin{aligned}
& \left\langle\phi_{i}\left(u_{1}, v_{1}\right) \phi_{j}(0,0) \phi_{k}\left(u_{3}, v_{3}\right)\right\rangle_{\mathrm{cyl}} \\
& \sim c_{i j k}(2 \pi / L)^{x_{i}+x_{j}+x_{k}} e^{-2 \pi x_{i}\left|u_{1}\right| / L} e^{2 \pi i\left(s_{i}-s_{j}\right) v_{1} / L} e^{-2 \pi x_{k} u_{3} / L} e^{2 \pi i\left(s_{j}-s_{k}\right) v_{3} / L}
\end{aligned}
$$

where $x_{i}, s_{i}=\Delta_{i} \pm \bar{\Delta}_{i}$, etc. If we write this in terms of operators

$$
\begin{aligned}
& \langle 0| e^{i v_{1} \hat{P}} \hat{\phi}_{i}(0) e^{-i v_{1} \hat{P}} e^{-\left|u_{1}\right| \hat{H}} \hat{\phi}_{j}(0) e^{-u_{3} \hat{H}} e^{i v_{3} \hat{P}} \hat{\phi}_{k}(0) e^{-i v_{3} \hat{P}}|0\rangle \\
& \sim\left\langle 0 \mid \phi_{i}\right\rangle\left\langle\phi_{i}\right| \hat{\phi}_{j}\left|\phi_{k}\right\rangle\left\langle\phi_{k} \mid 0\right\rangle e^{-2 \pi x_{i}\left|u_{1}\right| / L} e^{2 \pi i\left(s_{i}-s_{j}\right) v_{1} / L} e^{-2 \pi x_{k} u_{3} / L} e^{2 \pi i\left(s_{j}-s_{k}\right) v_{3} / L}
\end{aligned}
$$

On the other hand doing the same for the 2-point function (or simply setting $\phi_{j}=1$ in the above) we see that $\left\langle 0 \mid \phi_{i}\right\rangle=(2 \pi / L)^{x_{i}},\left\langle\phi_{k} \mid 0\right\rangle=(2 \pi / L)^{x_{k}}$, so finally

$$
\left\langle\phi_{i}\right| \hat{\phi}_{j}(0)\left|\phi_{k}\right\rangle=(2 \pi / L)^{x_{j}} c_{i j k}
$$

This means that the OPE coefficients may be measured knowing matrix elements on the cylinder.
2. According to first-order perturbation theory, we need to work out

$$
\begin{aligned}
& \lambda\left\langle\phi_{j}\right| \int_{0}^{L} T(v) \bar{T}(v) d v\left|\phi_{j}\right\rangle=\lambda \int\left\langle\phi_{j}\right| T(v)\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \bar{T}(v)\left|\phi_{j}\right\rangle d v \\
& =\lambda(1 / L)\left\langle\phi_{j}\right| \int T(v) d v\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \int \bar{T}(v) d v\left|\phi_{j}\right\rangle \\
& =\lambda(2 \pi / L)^{2}(1 / L)\left\langle\phi_{j}\right| L_{0}-(c / 24)\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \bar{L}_{0}-(c / 24)\left|\phi_{j}\right\rangle \\
& =\lambda\left(4 \pi^{2} / L^{3}\right)\left(\Delta_{j}-(c / 24)\right)\left(\bar{\Delta}_{j}-(c / 24)\right)
\end{aligned}
$$

Note this is negligible compared to the $O(1 / L)$ term as $L \rightarrow \infty$, typical of the effect of an irrelevant perturbation.
3. Suppose the operator is ϕ. Its fusion rules must have the form $\phi \cdot \phi=1+\phi$, with no other operators. Since this is a minimal model, it must lie in the first column or first row of the Kac table. In the first case it must be $\phi_{1,2}$, but in general this will also give $\phi_{1,3}$ in fusion with itself. This can only work therefore if in fact $\Delta_{1,3}=\Delta_{1,2}$, that is $\left(p-2 p^{\prime}\right)^{2}=\left(p-3 p^{\prime}\right)^{2}$, that is $2 p-5 p^{\prime}$, or $p=5, p^{\prime}=2$. (No multiples are allowed because $p^{\prime}>2$ would allow more columns in the Kac table.) Thus $c=-\frac{22}{5}$ and $\Delta_{1,2}=-\frac{1}{5}$. We also find that $\Delta_{1,4}=1$. This was identified in [JC, Phys. Rev.

Lett. 54, 1354, (1985)] as the scaling limit of the Yang-Lee edge singularity (a ϕ^{3} field theory with purely imaginary coupling.)
Exchanging rows and columns just swaps $p \leftrightarrow p^{\prime}$. The case of two fields is slightly more complex: if we allow only one column then we get the model with $p=7, p^{\prime}=2$. If we allow two columns we get the unitary model with $c=\frac{1}{2}$.
4. Modular invariance implies that $Z(\delta)=Z(1 / \delta)$, and hence that $Z^{\prime}(1)=0$. Writing $Z=e^{-2 \pi c \delta / 12} \sum_{j} e^{-2 \pi x_{j} \delta}$ gives

$$
\frac{c}{12}=\frac{\sum_{j} x_{j} e^{-2 \pi x_{j}}}{\sum_{j} e^{-2 \pi x_{j}}}<x_{\min } \frac{\sum_{j \geq 1} e^{-2 \pi x_{j}}}{1+\sum_{j \geq 1} e^{-2 \pi x_{j}}}<x_{\min }
$$

but it is clearly possible to do much better than this. For the latest effort in this direction see arXiv:1405.5137
5. The answer is almost given: $\operatorname{Tr} \Sigma q^{L_{0}-c / 24} \bar{q}^{L_{0}-c / 24}=\left|\chi_{0}\right|^{2}+\left|\chi_{1 / 2}\right|^{2}-\left|\chi_{1 / 16}\right|^{2}$. Writing this as the modular invariant sum minus $2\left|\chi_{1 / 16}\right|^{2}$, we see that under S it goes into

$$
\begin{aligned}
& \left|\chi_{0}\right|^{2}+\left|\chi_{1 / 2}\right|^{2}+\left|\chi_{1 / 16}\right|^{2}-2 \frac{1}{\sqrt{2}}\left(\overline{\chi_{0}}-\overline{\chi_{1 / 2}}\right) \frac{1}{\sqrt{2}}\left(\chi_{0}-\chi_{1 / 2}\right) \\
& =\bar{\chi}_{0} \chi_{1 / 2}+\bar{\chi}_{1 / 2} \chi_{0}+\left|\chi_{1 / 16}\right|^{2}
\end{aligned}
$$

This means that in the antiperiodic sector the lowest energy state corresponds to an operators with dimensions $\left(\frac{1}{16}, \frac{1}{16}\right)$. This is the disorder operator, dual to the magnetisation and with the same dimensions. There are also a primaries with dimensions $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) - these are the Ising fermions.

