Introduction to Conformal Field Theory

Trinity Term 2014

Prof. J. Cardy

Solutions 2

1. Use the transformation $w = (L/2\pi) \log z$ as for the 2-point function, and the fact that in the plane $\langle \phi_i(z_1)\phi_j(z_2)\phi_k(z_3)\rangle = c_{ijk}/((z_1-z_2)^{\Delta_i+\Delta_j-\Delta_k}\cdots)$. On the cylinder, taking $w_2 = 0$, and $w_1 = u_1 + iv_1$, $w_3 = u_3 + iv_3$, with $u_1 \ll -L$, $u_3 \gg L$, we find after some algebra

$$\langle \phi_i(u_1, v_1) \phi_j(0, 0) \phi_k(u_3, v_3) \rangle_{\text{cyl}} \sim c_{ijk} (2\pi/L)^{x_i + x_j + x_k} e^{-2\pi x_i |u_1|/L} e^{2\pi i (s_i - s_j) v_1/L} e^{-2\pi x_k u_3/L} e^{2\pi i (s_j - s_k) v_3/L}$$

where $x_i, s_i = \Delta_i \pm \overline{\Delta}_i$, etc. If we write this in terms of operators

$$\langle 0|e^{iv_1\hat{P}}\hat{\phi}_i(0)e^{-iv_1\hat{P}}e^{-|u_1|\hat{H}}\hat{\phi}_j(0)e^{-u_3\hat{H}}e^{iv_3\hat{P}}\hat{\phi}_k(0)e^{-iv_3\hat{P}}|0\rangle \sim \langle 0|\phi_i\rangle\langle\phi_i|\hat{\phi}_j|\phi_k\rangle\langle\phi_k|0\rangle e^{-2\pi x_i|u_1|/L}e^{2\pi i(s_i-s_j)v_1/L}e^{-2\pi x_ku_3/L}e^{2\pi i(s_j-s_k)v_3/L}$$

On the other hand doing the same for the 2-point function (or simply setting $\phi_j = 1$ in the above) we see that $\langle 0|\phi_i\rangle = (2\pi/L)^{x_i}$, $\langle \phi_k|0\rangle = (2\pi/L)^{x_k}$, so finally

$$\langle \phi_i | \hat{\phi}_j(0) | \phi_k \rangle = (2\pi/L)^{x_j} c_{ijk}$$

This means that the OPE coefficients may be measured knowing matrix elements on the cylinder.

2. According to first-order perturbation theory, we need to work out

$$\lambda \langle \phi_j | \int_0^L T(v) \overline{T}(v) dv | \phi_j \rangle = \lambda \int \langle \phi_j | T(v) | \phi_j \rangle \langle \phi_j | \overline{T}(v) | \phi_j \rangle dv$$
$$= \lambda (1/L) \langle \phi_j | \int T(v) dv | \phi_j \rangle \langle \phi_j | \int \overline{T}(v) dv | \phi_j \rangle$$
$$= \lambda (2\pi/L)^2 (1/L) \langle \phi_j | L_0 - (c/24) | \phi_j \rangle \langle \phi_j | \overline{L}_0 - (c/24) | \phi_j \rangle$$
$$= \lambda (4\pi^2/L^3) (\Delta_j - (c/24)) (\overline{\Delta}_j - (c/24))$$

Note this is negligible compared to the O(1/L) term as $L \to \infty$, typical of the effect of an irrelevant perturbation.

3. Suppose the operator is ϕ . Its fusion rules must have the form $\phi \cdot \phi = 1 + \phi$, with no other operators. Since this is a minimal model, it must lie in the first column or first row of the Kac table. In the first case it must be $\phi_{1,2}$, but in general this will also give $\phi_{1,3}$ in fusion with itself. This can only work therefore if in fact $\Delta_{1,3} = \Delta_{1,2}$, that is $(p - 2p')^2 = (p - 3p')^2$, that is 2p - 5p', or p = 5, p' = 2. (No multiples are allowed because p' > 2 would allow more columns in the Kac table.) Thus $c = -\frac{22}{5}$ and $\Delta_{1,2} = -\frac{1}{5}$. We also find that $\Delta_{1,4} = 1$. This was identified in [JC, Phys. Rev.

Lett. 54, 1354, (1985)] as the scaling limit of the Yang-Lee edge singularity (a ϕ^3 field theory with purely imaginary coupling.)

Exchanging rows and columns just swaps $p \leftrightarrow p'$. The case of two fields is slightly more complex: if we allow only one column then we get the model with p = 7, p' = 2. If we allow two columns we get the unitary model with $c = \frac{1}{2}$.

4. Modular invariance implies that $Z(\delta) = Z(1/\delta)$, and hence that Z'(1) = 0. Writing $Z = e^{-2\pi c \delta/12} \sum_j e^{-2\pi x_j \delta}$ gives

$$\frac{c}{12} = \frac{\sum_{j} x_{j} e^{-2\pi x_{j}}}{\sum_{j} e^{-2\pi x_{j}}} < x_{\min} \frac{\sum_{j \ge 1} e^{-2\pi x_{j}}}{1 + \sum_{j \ge 1} e^{-2\pi x_{j}}} < x_{\min}$$

but it is clearly possible to do much better than this. For the latest effort in this direction see arXiv:1405.5137

5. The answer is almost given: $\operatorname{Tr} \Sigma q^{L_0 - c/24} \overline{q}^{\overline{L}_0 - c/24} = |\chi_0|^2 + |\chi_{1/2}|^2 - |\chi_{1/16}|^2$. Writing this as the modular invariant sum minus $2|\chi_{1/16}|^2$, we see that under S it goes into

$$\begin{aligned} |\chi_0|^2 + |\chi_{1/2}|^2 + |\chi_{1/16}|^2 - 2\frac{1}{\sqrt{2}}(\overline{\chi_0} - \overline{\chi_{1/2}})\frac{1}{\sqrt{2}}(\chi_0 - \chi_{1/2}) \\ &= \overline{\chi}_0 \chi_{1/2} + \overline{\chi}_{1/2} \chi_0 + |\chi_{1/16}|^2 \end{aligned}$$

This means that in the antiperiodic sector the lowest energy state corresponds to an operators with dimensions $(\frac{1}{16}, \frac{1}{16})$. This is the disorder operator, dual to the magnetisation and with the same dimensions. There are also a primaries with dimensions $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$ — these are the Ising fermions.