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Solutions 1

1. Consider an inversion r — r/|r|%. The Jacobian is |r|72, so
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This is an identity if 21 = x5 but cannot be true otherwise: for example by taking
r1 — 0 we see that it is false. Note that this uses only the special conformal group
so is true for primary fields in higher dimensions.

2. Choose spherical polar coordinates (R,6,$) on the sphere, with metric ds? =
R%(d6? + sin? 0d¢?). The plane is tangent to the sphere at the N pole § = 0, and
the projection P’ of a point P is where a line from the S pole through P intersects
this plane. This gives P’ to be at (p, ¢) in polar coordinates, where p = 2R sin g.
This is conformal because ds? = cos® &(dp* + p?d¢?). Hence
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Note that the expression in brackets is the (square of) the chordal distance between
the two points on the sphere.
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After some algebra this gives, with w = r + i1,
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Note this decays exponentially as |r; —r3| — 0o, with the thermal correlation length
¢ ~2mx /. Continuing to real time we find (setting ro = t5 = 0 for convenience)
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However, this is valid only outside the light cone ¢ < |r|. A naive continuation
beyond this suggests that it gains an imaginary part o< sin(mz). In some lattice
models this agrees with explicit results, taking first ¢ > |r| and then the continuum
limit.



4. (a) use the conformal mapping
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which takes Im z > 0 into |w| < R. Hence
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(b) use w = (L/m)log z. The same sort of argument gives

(w/L) )9&
sin(mwy/L)

%
dw

<mmw»m=\

wwzwmm=<

. The normalisation constant in front of the action is somewhat arbitrary. We can
choose it so the 2-point functions are
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The stress tensor T' may be found using Noether’s theorem, of simply by observing
that T = 0.1 is the only bilinear in the fields which has the correct scaling
dimensions (2,0). The constant a may be fixing by demanding the T satisfy the
correct OPE with ¢. By Wick’s theorem (note that the contraction between the 1(z)
at the same point is removed by point-splitting and subtracting this contribution)
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so we should take o = —% to get the last term right. This also gives A, = % as
expected. The 2-point function is now
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