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Homework Problem Solutions

1. Let f0 = (e(ε−µ)/T + 1)−1 be the unperturbed Fermi distribution. The
Boltzmann equation to first order in f − f0 is then
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The particle current is
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and since this comes entirely from the difference f − f0 we can use the
BE to write it as
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where the expression in square brackets is the same as above, and D is
the density of states.

On the other hand, the energy current Qx is given by the same ex-
pression with the insertion of a factor of ε (or ε − εF – it depends if
you prefer to think about electrons and holes) in the integrand. We
should adjust ∂(µ/T )/∂x so that Jx = 0. [The heat current is actually
Qx − µJx, but since Jx = 0 they are the same.] In the approximation
that f ′0(ε) ∝ δ(ε − εF ), this insertion is a constant εF , and so Qx = 0
also. In order to get a non-zero answer, we must do better.

If we assume a spherical Fermi surface with ε = p2/2m, then D(ε) =
(2εm3)1/2/π2h3 and v2

x = 2ε/3m. Then (I apologise for not using the
notation of Ashcroft and Mermin – my copy is missing so I had to work
it out by myself)
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while
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Imposing Jx = 0 we get
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To get a non-zero result at low T we must write ε = εF +δε and expand
to second order in δε. We therefore get Is = n(1 + const.s(s − 1)T 2).
The final answer (after some algebra) is Qx = λ(−∂T/∂x) where

λ =
π2nτ

3m
T .

2. Let us first give the heuristic derivation. The effective field acting on
Si is heff

i =
∑

j Jijmj + h, where mj = tanh(heff
j ). We now assume

that the heff
i are gaussian random variables with mean h and variance

(as before) J2q. Self-consistency now demands that

q ∝
∫
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On rescaling heff − h = J
√

qz,

q = (2π)−1/2
∫
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Similarly, the mean magnetisation is
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∫
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In the replica method, the modification is also straightforward: it comes
when we make the trace over the Sα

i at a single site:
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[I apologise that the last part wasn’t totally clear: the last words should
read ‘diverges as T → Tc+’.] To find the dependence of M on h, we
first have to solve for q as a function of h. The SK equation for small
q and small h takes the form

q = (βJ)q − q2 + O(h2)

In the high temperature phase we can ignore the q2 term so

q ∼ h2

T − Tc

If we now expand the equation for M we find

M ∼
∫

dze−
1
2
z2

(
β(J

√
qz + h) + const(J

√
qz + h)3 + · · ·

)

The non-zero terms are of the form (apart from constants) h+ qh+h3.
So we see that ∂M/∂h is finite as t → Tc, but

∂3M

∂h3
∝ 1

T − Tc

3. (a) The 2-point function is

〈cos p(θ(r1)− φ) cos p(θ(r2)− φ)〉 ∝ Re 〈eip(θ(r1)−θ(r2)〉

We did the case p = 1 in the lecture. In general we get

e−
1
2
p2〈(θ(r1)−θ(r2))2〉 ∼ 1

|r1 − r2|p2/2πK

This means that xp = p2/4πK. If we add this term to the hamil-
tonian, as

hp

∫ d2r

a2
cos p(θ(r)− φ)

and make an RG transformation a → ba, we see that hp → byphp

where

yp = 2− xp = 2− p2

4πK
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(b) This is irrelevant if yp < 0, i.e. K < p2/π, or T > Tp = 8πJ/p2.
On the other hand the vortices are irrelevant if T < TKT = πJ/2.
There is therefore a range of temperatures where both are irrele-
vant if p > 4. This will have quasi-LRO. If T < Tp, hp is relevant
and the system will order into one of p possible phases. (In this
case we can expand the cos pθ about one of the maxima and get
a quadratic term ∝ θ2 which corresponds to a finite correlation
length.) If T > TKT we expect the usual paramagnetic phase. If
p ≤ 4 the system will undergo a single transition from the ordered
phase to the paramagnetic phase, with no quasi-LRO intermediate
phase.

(c) For hp À J , the spins should follow the local random field. For
h ¿ J we might expect an ordered phase, and for small T a
quasi-LRO ordered phase, just as for hp = 0.

(d) The replicated partition function has the form

Tr exp
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−
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2
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Performing the quenched average by expanding in hp, integrating
over φ(r) and re-exponentiating, we get

exp


∆p

∑

α 6=β

cos p(θα − θβ)




If we work out the 2-point function of this, we just get the square
of the result in part (1), so the scaling dimension is 2xp = p2/2πK.
(This is just as in the Harris criterion RG argument.) Hence the
RG eigenvalue of ∆p is

2− p2

2πK

and is now irrelevant for T > 1
2
Tp = 4πJ/p2. Both this and the

vortices are irrelevant for p > 2
√

2.

[Actually the analysis is much more complicated than this because
other terms get generated in the RG, like

∑
α 6=β(∇θα)(∇θβ). See

J. Cardy and S. Ostlund, Phys. Rev. B 25, 6899 (1981).]
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