Advanced Topics in Statistical Mechanics
 Michaelmas Term, 2007 - Prof. J. Cardy Homework Problem Solutions

1. Let $f_{0}=\left(e^{(\epsilon-\mu) / T}+1\right)^{-1}$ be the unperturbed Fermi distribution. The Boltzmann equation to first order in $f-f_{0}$ is then

$$
v \frac{\partial f_{0}}{\partial x}=-\frac{f-f_{0}}{\tau}
$$

The LHS is

$$
v f_{0}^{\prime}(\epsilon)\left[-\frac{\epsilon}{T} \frac{\partial T}{\partial x}-T \frac{\partial(\mu / T)}{\partial x}\right]
$$

The particle current is

$$
J_{x}=\int v_{x} f \frac{2 d^{3} p}{h^{3}}
$$

and since this comes entirely from the difference $f-f_{0}$ we can use the BE to write it as

$$
J_{x}=-\tau \int v_{x}^{2} f_{0}^{\prime}(\epsilon)[\cdots] D(\epsilon) d \epsilon
$$

where the expression in square brackets is the same as above, and D is the density of states.
On the other hand, the energy current Q_{x} is given by the same expression with the insertion of a factor of ϵ (or $\epsilon-\epsilon_{F}$ - it depends if you prefer to think about electrons and holes) in the integrand. We should adjust $\partial(\mu / T) / \partial x$ so that $J_{x}=0$. [The heat current is actually $Q_{x}-\mu J_{x}$, but since $J_{x}=0$ they are the same.] In the approximation that $f_{0}^{\prime}(\epsilon) \propto \delta\left(\epsilon-\epsilon_{F}\right)$, this insertion is a constant ϵ_{F}, and so $Q_{x}=0$ also. In order to get a non-zero answer, we must do better.
If we assume a spherical Fermi surface with $\epsilon=\mathbf{p}^{2} / 2 m$, then $D(\epsilon)=$ $\left(2 \epsilon m^{3}\right)^{1 / 2} / \pi^{2} h^{3}$ and $\overline{v_{x}^{2}}=2 \epsilon / 3 m$. Then (I apologise for not using the notation of Ashcroft and Mermin - my copy is missing so I had to work it out by myself)

$$
Q_{x}=\frac{2^{3 / 2} m^{1 / 2}}{3 \pi^{2} h^{3}}\left(-I_{7 / 2} \frac{1}{T} \frac{\partial T}{\partial x}-I_{5 / 2} \frac{\partial(\mu / T)}{\partial x}\right)
$$

while

$$
J_{x}=\frac{2^{3 / 2} m^{1 / 2}}{3 \pi^{2} h^{3}}\left(-I_{5 / 2} \frac{1}{T} \frac{\partial T}{\partial x}-I_{3 / 2} \frac{\partial(\mu / T)}{\partial x}\right)
$$

where

$$
I_{s}=-\int_{0}^{\infty} \epsilon^{s} f_{0}^{\prime}(\epsilon) d \epsilon
$$

Imposing $J_{x}=0$ we get

$$
Q_{x}=-\frac{2^{3 / 2} m^{1 / 2}}{3 \pi^{2} h^{3}}\left(I_{7 / 2}-\frac{I_{5 / 2}^{2}}{I_{3 / 2}}\right) \frac{1}{T} \frac{\partial T}{\partial x}
$$

To get a non-zero result at low T we must write $\epsilon=\epsilon_{F}+\delta \epsilon$ and expand to second order in $\delta \epsilon$. We therefore get $I_{s}=n\left(1+\right.$ const.s $\left.(s-1) T^{2}\right)$. The final answer (after some algebra) is $Q_{x}=\lambda(-\partial T / \partial x)$ where

$$
\lambda=\frac{\pi^{2} n \tau}{3 m} T .
$$

2. Let us first give the heuristic derivation. The effective field acting on S_{i} is $h_{i}^{\text {eff }}=\sum_{j} J_{i j} m_{j}+h$, where $m_{j}=\tanh \left(h_{j}^{\text {eff }}\right)$. We now assume that the $h_{i}^{e f f}$ are gaussian random variables with mean h and variance (as before) $J^{2} q$. Self-consistency now demands that

$$
q \propto \int d h^{e f f} e^{-\left(h^{e f f}-h\right)^{2} / 2 J^{2} q} \tanh ^{2}\left(\beta h^{e f f}\right)
$$

On rescaling $h^{e f f}-h=J \sqrt{q} z$,

$$
q=(2 \pi)^{-1 / 2} \int d z e^{-z^{2} / 2} \tanh ^{2} \beta(J \sqrt{q} z+h)
$$

Similarly, the mean magnetisation is

$$
M=(2 \pi)^{-1 / 2} \int d z e^{-\frac{1}{2} z^{2}} \tanh \beta(J \sqrt{q} z+h)
$$

In the replica method, the modification is also straightforward: it comes when we make the trace over the S_{i}^{α} at a single site:

$$
\operatorname{Tr}(2 \pi)^{-1 / 2} \int d z e^{-\frac{1}{2} z^{2}+(z(\beta J) \sqrt{q}+h) \sum_{\alpha} S_{i}^{\alpha}}
$$

[I apologise that the last part wasn't totally clear: the last words should read 'diverges as $T \rightarrow T_{c}+$ '.] To find the dependence of M on h, we first have to solve for q as a function of h. The SK equation for small q and small h takes the form

$$
q=(\beta J) q-q^{2}+O\left(h^{2}\right)
$$

In the high temperature phase we can ignore the q^{2} term so

$$
q \sim \frac{h^{2}}{T-T_{c}}
$$

If we now expand the equation for M we find

$$
M \sim \int d z e^{-\frac{1}{2} z^{2}}\left(\beta(J \sqrt{q} z+h)+\operatorname{const}(J \sqrt{q} z+h)^{3}+\cdots\right)
$$

The non-zero terms are of the form (apart from constants) $h+q h+h^{3}$. So we see that $\partial M / \partial h$ is finite as $t \rightarrow T_{c}$, but

$$
\frac{\partial^{3} M}{\partial h^{3}} \propto \frac{1}{T-T_{c}}
$$

3. (a) The 2-point function is

$$
\left\langle\cos p\left(\theta\left(r_{1}\right)-\phi\right) \cos p\left(\theta\left(r_{2}\right)-\phi\right)\right\rangle \propto \operatorname{Re}\left\langle e^{i p\left(\theta\left(r_{1}\right)-\theta\left(r_{2}\right)\right.}\right\rangle
$$

We did the case $p=1$ in the lecture. In general we get

$$
e^{-\frac{1}{2} p^{2}\left\langle\left(\theta\left(r_{1}\right)-\theta\left(r_{2}\right)\right)^{2}\right\rangle} \sim \frac{1}{\left|r_{1}-r_{2}\right|^{p^{2} / 2 \pi K}}
$$

This means that $x_{p}=p^{2} / 4 \pi K$. If we add this term to the hamiltonian, as

$$
h_{p} \int \frac{d^{2} r}{a^{2}} \cos p(\theta(r)-\phi)
$$

and make an RG transformation $a \rightarrow b a$, we see that $h_{p} \rightarrow b^{y_{p}} h_{p}$ where

$$
y_{p}=2-x_{p}=2-\frac{p^{2}}{4 \pi K}
$$

(b) This is irrelevant if $y_{p}<0$, i.e. $K<p^{2} / \pi$, or $T>T_{p}=8 \pi J / p^{2}$. On the other hand the vortices are irrelevant if $T<T_{K T}=\pi J / 2$. There is therefore a range of temperatures where both are irrelevant if $p>4$. This will have quasi-LRO. If $T<T_{p}, h_{p}$ is relevant and the system will order into one of p possible phases. (In this case we can expand the $\cos p \theta$ about one of the maxima and get a quadratic term $\propto \theta^{2}$ which corresponds to a finite correlation length.) If $T>T_{K T}$ we expect the usual paramagnetic phase. If $p \leq 4$ the system will undergo a single transition from the ordered phase to the paramagnetic phase, with no quasi-LRO intermediate phase.
(c) For $h_{p} \gg J$, the spins should follow the local random field. For $h \ll J$ we might expect an ordered phase, and for small T a quasi-LRO ordered phase, just as for $h_{p}=0$.
(d) The replicated partition function has the form

$$
\operatorname{Tr} \exp \left(-\int d^{2} r\left(\frac{1}{2} K \sum_{\alpha}\left(\nabla \theta_{\alpha}\right)^{2}+h_{p} \sum_{\alpha} \cos p\left(\theta_{\alpha}-\phi(r)\right)\right)\right)
$$

Performing the quenched average by expanding in h_{p}, integrating over $\phi(r)$ and re-exponentiating, we get

$$
\exp \left(\Delta_{p} \sum_{\alpha \neq \beta} \cos p\left(\theta_{\alpha}-\theta_{\beta}\right)\right)
$$

If we work out the 2 -point function of this, we just get the square of the result in part (1), so the scaling dimension is $2 x_{p}=p^{2} / 2 \pi K$. (This is just as in the Harris criterion RG argument.) Hence the RG eigenvalue of Δ_{p} is

$$
2-\frac{p^{2}}{2 \pi K}
$$

and is now irrelevant for $T>\frac{1}{2} T_{p}=4 \pi J / p^{2}$. Both this and the vortices are irrelevant for $p>2 \sqrt{2}$.
[Actually the analysis is much more complicated than this because other terms get generated in the RG, like $\sum_{\alpha \neq \beta}\left(\nabla \theta_{\alpha}\right)\left(\nabla \theta_{\beta}\right)$. See J. Cardy and S. Ostlund, Phys. Rev. B 25, 6899 (1981).]

