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1 Gravity: unshielded long-range force

We have to deal with particles that may be stars, planets, or dark-matter particles of mass
< 1TeV. We shall speak of “stars” regardless of whether the particles really are stars.

In a gas the particles interact by a short-range force, 2 at a time; in a plasma they interact
by a long-range force, but shielding suppresses system-wide accumulation of force. In a stellar
system the force is long-range and unshielded.

In this regard a stellar system is more complex than a plasma, but it is simpler because
relativistic effects can be neglected – in a plasma the cancelling electrostatic forces are so huge
that miniscule relativistic corrections to them become crucial – magnetism. In a stellar system
one can neglect relativist corrections to the “electrostatic” force Gm1m2/r

2.

Fig. 1. Each shaded portio of the cone contributes equally to the force on the star at its apex.

The contribution to the force on a test star of mass m from stars at distance r in a cone
is δF = [Gmρ(r)r2δΩ/r2]δr, so over distances within which ρ ∼ const, equal forces come from
equal intervals in distance. That is the net force is sensitive to the bulk of the system and the
contribution of closest neighbours is very small. Hence, the force can be accurately estimated by
the mean-field model in which the mass of each star is spread through a sphere comparable
in size to the inter-star distance; i.e., we compute the potential Φ(x) and force −m∇Φ from a
smooth mass distribution ρ(x).

Our zeroth-order approximation to the motion of a star is the trajectory that follows from
its initial (x,v) and Φ(x).

1.1 The virial theorem

We now prove a very useful result that follows from the scale-free nature of the gravitational
interaction. Suppose we differentiate a kind of moment of inertial I =

∑
αmα|xα|2:

d2I

dt2
= 2

∑

α

mα

(
xα · ẍα + |ẋα|2

)
. (1.1)

Now
ẍα = G

∑

β

mαmβ

|xα − xβ |3
(xβ − xα) (1.2)

so ∑

α

xα · ẍα = G
∑

αβ

mαmβ

|xα − xβ |3
xα · (xβ − xα). (1.3)

Interchanging α, β on the right side and adding to the original equation, we find

2
∑

α

xα · ẍα = G
∑

αβ

mαmβ

|xα − xβ |3
(xα − xβ) · (xβ − xα) = −G

∑

αβ

mαmβ

|xα − xβ |
= 2W, (1.4)

where W is the system’s potential energy. Inserting this into (1.1)

d2I

dt2
= 2W + 4K, (1.5)

where K is the system’s kinetic energy. If the system is statistically in a steady state, I = const
to within Poisson noise, and we have the virial theorem

2K +W = 0. (1.6)
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2 CBE, Jeans thm, constants of motion

By Liouville’s thm, in this approximation the probability density of stars f(x,v) obeys the
Collisionless Boltzmann Equation

df

dt
=
∂f

∂t
+ q̇ · ∂f

∂q
+ ṗ · ∂f

∂p
= 0

∂f

∂t
+
∂H

∂p
· ∂f
∂q

− ∂H

∂q
· ∂f
∂p

= 0

∂f

∂t
= {H, f}

(2.1)

The CBE states that the distribution function (DF) f of an equilibrium system is a constant of
motion. So any non-negative function f(I1, . . . , In) of constants of motion with

∫
d3xd3v f <

∞ provides a model of an equilibrium system (Jeans’ thm).

2.1 Angle-action variables

In a (homogeneous) plasma we have v = const, so f(v) solves CBE. In a stellar system
v 6= const but we can write f(H) or if spherical f(H,L) or if axisymmetric f(H,Lz).

But in axisymmetric Φ(R, z), f(H,Lz) is not generic. Numerical integration of orbits
shows they are quasi-perioidic; this means that the coordinates (and momenta) along an
orbit can be expanded as

x(t) =
∑

n

Xne
in·Ωt

where n = (n1, n2, n3) has integer components and Ω = (Ω1,Ω2,Ω3) is a triple of character-
istic frequencies. (If the orbit were periodic, the Fourier expansion would contain only one
characteristic frequency; it’s quasiperiodic because there are more frequencies than arguments,
here t.) The quasi-periodic nature of orbits implies (see Arnold’s book) ∃ 3 constants of motion
Ii.

Any F (I1, I2, I3) is a const of motion, so we have infinite freedom in what we use for
arguments of the DF. By far the best choice is a set (J1, J2, J3) st ∃ canonoically conjugate
variables θi. Then {θi, Jj} = δij , etc. Because 0 = J̇ = {J,H} = −∂H/∂θ, we have H(J).
Also

θ̇ =
∂H

∂J
= Ω(J) = const, (2.2)

so
θ(t) = θ(0) +Ωt, (2.3)

i.e., the angle variables θi increase linearly with time. We scale the action integrals Ji such
that x,v) along an orbit become periodic with period 2π:

x(θ+ 2πm,J) = x(θ,J) with integer mi. (2.4)

The action integrals Ji are defined up to a set of discrete canonical transformations
(generating function S(θ,J′) = θ · M · J′ where the matrix M has integer elements). For an
axisymmetric system the actions are uniquely defined by requiring that

Jr quantifies radial excursions

Jφ = Lz

Jz quantifies oscilations perpendicular to the equatorial plane.

(2.5)

In the spherical limit Jz = L− |Lz| is the angular momentum in the (x, y) plane.

A generic equilibrium system has f(J).
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3 Encounters

We can consider that the difference δΦ between the real Φ and the mean-field Φ perturbs the
motion of stars in the mean-field Φ. δΦ comprises a series of Kepler potentials minus the
potential obtained by smoothing out a particle’s mass. Surely the dominant partner is the
Kepler potential, which diverges at the location of the scattering particle. So we compute an
encounter between two stars, a scatterer of mass m and a scattered star of mass M . The
encounter is completely described by the steady motion of the system’s centre of mass and the
scattering off a fixed Kepler potential −G(M+m)/r of the reduced particle, which has mass

µ =
mM

m+M
and velocity V = vM − vm. (3.1)

Since the centre-of-mass velocity is unchanged by the encounter

m∆vm +M∆vM = 0 (3.2)

and a little algebra yields

∆vM =
m

m+M
∆V. (3.3)

Fig. 2. Definition of the angles describing scattering of the reduced particle

If the encounter has impact parameter b and the reduced particle’s initial velocity is V0,
its angular-momentum per unit mass is L = bV0. Then its polar coordinates (r, ψ) in the
invariant plane satisfy (BT08 3.24)

1

r
= C cos(ψ − ψ0) +

G(M +m)

b2V 2
0

, (3.4)

where C and ψ0 are constants determined by the initial conditions. Differentiating (3.4) and
using r2ψ̇ = L = bV0

dr

dt
= Cr2ψ̇ sin(ψ − ψ0) = CbV0 sin(ψ − ψ0). (3.5)

We take the origin of ψ to be the direction to the particle at t = −∞ and then evaluating (3.5)
at t = −∞

−V0 = CbV0 sin(−ψ0) (3.6)

Evaluating (3.4) at t = −∞ gives

0 = C cosψ0 +
G(M +m)

b2V 2
0

, (3.7)

so

tanψ0 = − bV 2
0

G(M +m)
. (3.8)
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The point of closest approach is ψ = ψ0 and the orbit is symmetrical about this point, so the
deflection angle is θdefl = 2ψ0 −π. By conservation of energy the particle’s speed returns to V0
as t→ +∞. It follows that the changes in V parallel and perpendicular to the original velocity
are

|∆V⊥| = V0 sin θdefl = V0| sin 2ψ0| =
2V0| tanψ0|
1 + tan2 ψ0

=
2bV 3

0

G(M +m)

(
1 +

b2V 4
0

G2(M +m)2

)−1

|∆V‖| = V0(1− cos θdefl) = V0(1 + cos 2ψ0) =
2V0

1 + tan2 ψ0

= 2V0

(
1 +

b2V 4
0

G2(M +m)2

)−1

.

Using (3.3) to extract the components of ∆vM

|∆vM⊥| =
2mbV 3

0

G(M +m)2

(
1 +

b2V 4
0

G2(M +m)2

)−1

|∆vM‖| =
2mV0
M +m

(
1 +

b2V 4
0

G2(M +m)2

)−1

.

We have now to add the velocity changes caused by a succession of encounters as M moves
through a sea of stars m and common velocity vm. Each encounter produces a ∆vM⊥ in a
different direction, and in a uniform sea these will sum to zero. But since |∆vM‖| is always
directed opposite to V0 these contributions accumulate as a net drag on M .

3.1 Dynamical friction

Let’s focus on the fraction of the field stars that have velocities within d3vm of vm. The spatial
density of such stars is f(v)d3vm so the rate of encounters with them at impact parameter b is

2πbdb V0 f(vm)d3vm

so they change vM at a rate

dvM

dt
= V0f(vm)d3vm2π

∫ bmax

0

db b
2mV0
M +m

(
1 +

b2V 4
0

G2(M +m)2

)−1

= 2π ln(1 + Λ2)G2m(M +m)f(vm)d3vm
vm − vM

|vm − vM |3
(3.9a)

where

Λ ≡ bmaxV
2
0

G(M +m)
. (3.9b)

Typically Λ is large > 1000 and its logarithm is insensitive to V0. If we approximate ln(1+Λ2) ≃
2 ln Λ by a constant, the Coulomb logarithm, equation (3.9) states that each point in velocity
space contributes to the drag onM as if the density f(vm) in velocity space were a mass density
in real space that is attracting gravitationally. It follows that if the velocity distribution is
isotropic (i.e., f(vm) = f(|vm|)), the net drag comes entirely from stars that move more slowly
than M . In fact it’s easy to show that in this case when we sum over all velocities vm the drag
is

dvM

dt
= −16π2 ln ΛG2m(M +m)

∫ vM

0

dvm v2mf(vm)
vM

v3M
. (3.10)

This is Chandrasekhar’s dynamical friction formula. We’ll discuss it in the case that
M ≫ m.
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Then the deceleration of M is proportional to M , so the force on M is proportional to
M2. the physical origin of the deceleration is the gravitational pull on M from the region of
enhanced density of field stars that it creates behind it, as a ship leaves a wake on the ocean.
The mass of the wake is proportional to M so the force it imposes on M is proportional to M2

The deceleration is also proportional to the density nm of the stars being scattered but
independent of the masses of individual stars.

3.2 Stochastic acceleration

Equation (3.10) states thatM experiences a frictional drag even whenM = m and we are in fact
dealing with a field star. This observation suggests the conclusion that the whole population
of field stars will slow down until they are at rest. This conclusion is absurd because it would
violate conservation of energy, and is inconsistent with our expectation that the field-star
population should have a Maxwellian distribution as a steady state. The reason the stars do
not slow to rest is that in thermal equilibrium balance is achieved between dynamical friction
and stochastic acceleration associated with the random jolts ∆vM⊥. The jolts drive a random
walk in velocity space, and acting alone they would cause the whole population to diffuse off
to infinity. The job of dynamical friction is to pull them back to vm = 0. Thermal equilibrium
is characterised by balance between outward diffusion and inward drag.

We could simply add in quadrature the contributions ∆vM⊥ given by equation (3.9) but
it is easier and more instructive to resort to a crude computation. We compute the impulse
the reduced particle would receive if it sped past the origin at speed V0.

Fig. 3. Computing reduced-particle scattering in the impulse approximation

∆V⊥ =

∫ ∞

−∞

dtg⊥ =

∫
dt
G(M +m)

r2
b

r
≃ bG(M +m)

∫ ∞

−∞

dt
1

(b2 + V 2
0 t

2)3/2
=

2G(M +m)

bV0
(3.11)

For bV0/G(M +m) ≫ 1 this is in perfect agreement with our exact formula (3.9). However,
as b → 0 it diverges whereas the exact formula tends to zero. So we should not use our
approximate formula for b smaller than

b90 ≡ G(M +m)

V 2
0

, (3.12)

which corresponds to ψ0 = 3π/4 and θdefl = π/2. Note that ln(bmax/b90) ≃ ln Λ.

For forward scattering ∆vM⊥ > ∆vM‖ and we know that scattering at large b through
small angles dominates. So we sum in quadrature ∆vM⊥ ≃ 2Gm/bV0 [eq. (3.3)], and by
analogy with eq. (3.9) find

dv2
M

dt
= V0f(vm)d3vm2π

∫ bmax

b90

db b
4G2m2

b2V 4
0

= 8πG2m2 f(vm)d3vm

|vm − vM | ln(bmax/b90) (3.13)
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Now specialising to an isotropic f(vm) we integrate over all velocities

dv2
M

dt
= 8πG2m2 ln Λ

∫
dvm v2mf(vm)

∫
dθ

sin θ√
v2m + v2M − 2vmvM cos θ

∫
dφ

= 16π2G2m2 ln Λ

∫
dvm v2mf(vm)

[√
v2m + v2M − 2vmvM cos θ

2vmvM

]π

0

= 16π2G2m2 ln Λ

∫
dvm v2mf(vm)

1

max(vm, vM )

= 16π2G2m2 ln Λ

(
1

vM

∫ vM

0

dvm v2mf(vm) +

∫ ∞

vM

dvm vmf(vm)

)
.

(3.14)

Let’s apply this formula in the case M = m so we are actually studying the acceleration of a
typical field star. Then a typical value of vM is σ, the velocity dispersion of the field stars, and
the big bracket is of order n/8πσ (we know that

∫∞

0
dv v2f(v) = n/4π), where n = ρ/m is the

number density of field stars, so the time for vM to diffuse to a different part of velocity space
is

trelax =
v2M

dv2
M/dt

≃ σ3

2πG2mρ ln Λ
. (3.15)

To understand the structure of this formula, note that σ2 ∼ GM/R, where M and R are the
total mass and linear scale of the system, and (Gρ)−1/2 = tdyn is its dynamical time. So

trelax ∼ 0.1
M
m

σ

R
t2dyn ∼ 0.1Ntdyn (3.16)

where N ≡ M/m is the number of particles in the system.

3.3 Encounters at large impact parameters

The Coulomb logarithm lnΛ is a relic of our finding that in a strictly homogeneous star field,
the integrals for the drag and stochastic acceleration effects would diverge as we pushed to
large b. Real systems are inhomogeneous, so the integrals terminate naturally with b of order
the system size, but the conclusion is inescapable that the dominant fluctuations are associated
with encounters at the largest conceivable impact parameters. This conclusion is worrying, but
a back-of-envelope calculation explains what’s really happening.

In any volume V, which in the mean contains N stars of mass m and thus a total mass
M = Nm the actual mass fluctuates around this mean by

√
Nm =

√
mM. Consequently

the gravitational acceleration at some point due to V fluctuates by δg ∼ G
√
mM/R2, where

R is the characteristic system size. If the force is anomalously high, it will remain so for a
time t ∼ V1/3/σ ∼ (M/M)1/3R/σ, where M and σ are the system’s total mass and random
velocity. Multiplying the magnitude of the anomalous acceleration by its duration we obtain
an estimate of the contribution from V to the fluctuating velocity of our particle

δv ∼ δg t ∼ G
√
mM
R2

(M/M)1/3R

σ
∼ G

√
mM
R

(M/M)1/3√
GM/R

∼
√
Gm

R
(M/M)5/6. (3.17)

Thus Poisson fluctuations in the content of the largest sub-volumes make the largest contribu-
tions to the jitter in v. Of course there are more small sub-volumes than large ones, and their
fluctuations refresh more rapidly than those of the large sub-volumes, but these effects don’t
effectively compensate for the factor (M/M)5/6 in (3.17) by which a bigger volume has a bigger
impact. We conclude that the logarithmic divergences we encountered signal that fluctuations
in the gravitational potential are dominated by Poisson noise in the number of particles on
one side of the system rather than another. We have idealised the fluctuations as arising from
many simultaneous encounters, but this idealisation is not well-founded. It would be sounder
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to work in terms of thermally excited normal modes of oscillation that have a characteristic
scale that is comparable to the system’s size.

In an ideal gas the number of molecules in a given volume experiences Poisson fluctuations
as was assumed above, and these fluctuations can be considered to arise from thermally excited
sound waves. The self-gravity of a stellar system makes the system more compressible on large
scales than an ideal gas, with the consequence that the fluctuations should have a larger
amplitude than simple Poisson fluctuations.

3.4 Equipartition

For M/m large, dynamical friction is proportional to mM while stochastic acceleration is
proportional to m2. Hence the speed at which the two effects come into balance decreases with
increasing M :

dv2
M/dt

|dvM/dt|
=

m

M +m

1
vM

∫ vM
0

dvm v2mf(vm) +
∫∞

vM
dvm vmf(vm)

1
v2
M

∫ vM
0

dvm v2mf(vm)
. (3.18)

The denominator grows steadily with vM while the numerator falls very slowly with vM , so
the second fraction declines with increasing vM . Thus balance is achieved in the sense that the
second fraction is ∼ (M +m)/m at a speed that declines as M increases.

4 Fokker-Planck equation

Let P (w,∆) be the probability per unit time that a star with phase-space location (x,v) suffers
an encounter that increments its velocity by ∆. Then we can write the master equation

f(v, t+ δt) = f(v, t)− δt

∫
d3∆ f(v, t)P (v,∆) + δt

∫
d3∆ f(v −∆, t)P (v −∆,∆), (4.1)

where for brevity we have suppressed dependencies on x. The first integral counts stars that
are scattered away from v to some other velocity in the interval δt, while the second integral
counts stars that are scattered to v. We have seen that the dominant encounters are distant
ones that cause small deflections, so we may argue that P (v,∆) is non-negligible only for
small ∆. By contrast, neither f(v, t) nor P (v,∆) is a rapidly-varying function of their first
argument. This being so, we may Taylor expand the product f(v − ∆, t)P (v −∆,∆) in its
first argument and retain only three terms

f(v−∆, t)P (v−∆,∆) ≃ f(v, t)P (v,∆)−∆· ∂
∂v

[f(v, t)P (v,∆)]+ 1
2
∆i∆j

∂2

∂vi∂vj
[f(v, t)P (v,∆)]

(4.2)
When we substitute this approximation into the second integral of the master equation, we
obtain

δf

δt
= −

∫
d3∆∆ · ∂

∂v
[f(v, t)P (v,∆)] + 1

2

∫
d3∆∆i∆j

∂2

∂vi∂vj
[f(v, t)P (v,∆)]. (4.3)

The derivatives can be taken out of the integrals, and then we have

df

dt
= − ∂

∂v
· [D(v)f(v, t)] + 1

2

∂2

∂vi∂vj
[Dij(v)f(v, t)], (4.4a)

where the first and second-order diffusion coefficients are

Di(v) ≡
∫

d3∆∆iP (v,∆),

Dij(v) ≡
∫

d3∆∆i∆jP (v,∆).

(4.4b)

The first-order coefficient D simply describes dynamical friction: in an isotropic system, D ∝
−v and has a magnitude that is readily deduced from Chandrasekhar’s friction formula (3.10).
The second-order coefficient Dij is simply an elaboration of the stochastic heating term (3.14).
The Fokker-Planck equation (4.4a)
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4.1 Orbit-averaged Fokker-Planck equation

The derivation of the Fokker-Planck equation above is based on the conceit that particles
suffer changes of velocity while at a particular location x. But since distant encounters are the
strongest drivers of deviation from mean-field orbits, this conceit is indefensible. It is better to
start from the conception that at any time the system is in statistical equilibrium, so by the
Jeans theorem its distribution function is f(J). Encounters cause f to evolve according to the
orbit-averaged Fokker-Planck equation

∂f

∂t
= − ∂

∂J
· [D(J)f(J, t)] + 1

2

∂2

∂Ji∂Jj
[Dij(J)f(J, t)], (4.5a)

where

Di(J) ≡
∫

d3∆∆iP (J,∆),

Dij(v) ≡
∫

d3∆∆i∆jP (J,∆).

(4.5b)

The derivation of this equation precisely parallels the derivation of (4.4a) with v → J and the
suppression of the conjugate variable, now θ unnecessary because f has no dependence on θ.
P (J,∆) is now the probability per unit time that a star on the orbit J suffers a perturbation
that increments its action integrals by ∆.

Note that the Fokker-Planck equation can be written

∂f

∂t
= −divF, (4.6a)

where the diffusive flux is

Fi ≡ Dif − 1
2

∂

∂Jj
[Dijf ]. (4.6b)

This form of the equation manifests the conservation of stars as they diffuse. The second term
usually produces a flux that is in the opposite direction to the gradient of f , just as the flux of
heat in a bar is in the opposite direction to the temperature gradient. The vector D is usually
directed towards the origin of action space.

The orbit-averaged diffusion equation was criticised by Hénon on the grounds that it does
not encompass the important process of evaporation of stars from a cluster (BT08 §7.5.2). This
is because no finite action corresponds to an unbound orbit.

5 Binary stars

To this point our strategy has been to ignore correlations between stars beyond those implied
by the system’s large-scale inhomogeneity – we have characterised the system by its one-particle
distribution function. However, a significant fraction of stars are members of a binary system
and binary stars can have a big impact on the long-term evolution of star clusters.

When a field star has a close encounter with a binary star, energy is exchanged between
the binary’s internal energy Eb < 0 and the translational KE of the field and binary stars. If
|Eb| is decreased too much, the binary is disrupted (ionised). If |Eb| is increased, the cluster is
heated. The field star may exchange places with one of the binary stars.

5.1 Soft binaries

If Eb| < 1
2
mσ2 the binary is soft. The internal speed of the binary is slower than the random

motion in the cluster. On average, interactions with field stars make soft binaries softer, until
they are disrupted.



5.2 Hard binaries 11

5.2 Hard binaries

If |Eb| > 1
2mσ2 the binary is hard. When a field star comes close to a hard binary, an unstable

triple star is formed. Eventually one of the three stars is ejected with a velocity comparable
to the original binary velocity, so faster than σ. By conservation of energy the final binary
is harder than the original binary: Heggie’s law: hard binaries become harder, soft binaries
softer.

Fig. 4. A close encounter between a binary star and a single star

The bottom line: hard binaries are an energy source for a cluster just as nuclear fusion is
an energy source for stars. Soft binaries come and go without significant impact.

5.2.1 Formation of hard binaries A binary can form in a cluster of point masses only through
the interaction of 3 bodies: one is there to carry away the energy released as the other two form
a binary. If a hard binary is to form the relative velocity of the future binary members has to
change by of order itself, so the impact parameter has to be not much larger than b90, which
yields a π/2 deflection. The characteristic time t90 interval between a given star experiencing
a large deflection is given by nb290vt90 ≃ 1, and the probability that when this encounter occurs
there is a third particle within b90 is P3 ≃ nb390. Hence the time required for a given star to
have a non-negligible probability of entering a tight binary is

t2 ≃ t90
P3

≃ 1

n2b590v
≃ 1

n2v

(
v2

Gm

)5

(5.1)

But by the virial thm (1.6) r0 ∼ GNm/v2 so with (3.15)

t2
trelax

≃ 1

n2v

(
v2

Gm

)5
2πG2m2n lnΛ

v3
≃ 1

nr30
N32π ln Λ ≃ N22π ln Λ. (5.2)

The time required for one of the N stars in the core to get into a binary is smaller than t2 by
a factor N and the first tight binary will form after

tfst ∼ t2/N ≃ 2πN lnΛtrelax. (5.3)
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6 Thermal equilibrium?

6.1 Negative specific heat & core collapse

The virial thm (1.6) requires the potential energy W and the kinetic energy K to satisfy
W = −2K. Also E = K +W so E = −K. If follows that δK/δE = −1. But δK ∼ δT ,
temperature, and δE ∼ δQ, heat. So by the virial thm a stellar system has negative specific
heat C = δQ/δT .

Let’s put our stellar system in a sphere & drop it into a heat bath.

If Tbath < Tstar, heat will flow out of system into bath. Tstar will rise accelerating heat
loss: runaway (Lynden-Bell & Wood, 38, 495, 1968)

A star cluster can be conceptually divided into self-gravitating body and a low-mass en-
velope trapped in the body’s potential well. Envelope = bath, body = system and we expect
core collapse

6.2 Entropy

The Shannon entropy of a system’s probability distribution p(w1, . . . ,wN ) ≡ p(τ) is S =
−
∫
d6Nτ p ln p. In so far as correlations between stars can be neglected, p(τ) = f(w1)f(w2) · · ·,

and S = −N
∫
d6w f ln f . Divide system into body mass M1 and halo mass M2 ≪ M1 with

characteristic radius r2. The halo moves in the gravitational field of the body, so its velocity
dispersion satisfies σ2

2 ∼ GM1/r2, and most of its stars are located where

f2 ∼ 1

r32σ
3
2

∼ 1

(GM1r2)3/2
(6.1)

Now |E2| ∼ GM2M1/r2 so

S2 ∼ 3
2N2 ln(GM1r2) ∼ − 3

2N2 ln |E2|+ const (6.2)

By shrinking the body slightly we can obtain energy and feed it to the halo and thus make
|E2| as small as we please, driving S2 → ∞. Hence there is no upper bound on the system’s
entropy.

In ordinary statistical mechanics states of thermal equilibrium are states of maximum
entropy given E and M . We have shown that these states do not exist for a stellar system,
so such systems are incapable of achieving thermal equilibrium. They must be constantly
increasing their entropy by moving to states of higher central concentration. This is the physical
principle that drives the evolution of both stars and galaxies.

6.3 Evaporation

Encounters in a stellar system will drive n(v) = f(x,v) towards a Maxwellian. But stars that
reach v > vesc(x) =

√
2Φ(x) will escape. By the virial thm (1.6)

1
2Mvesc

2 ≡ −
∫

d6w fΦ = −
∫

d3xρΦ == −2PE = 2

∫
d6w fv2 ≡ 2Mσ2 (6.3)

so
vesc = 2σ (6.4)

In a Maxwellian a fraction ∼ 1/135 of stars have speeds greater than 2σ. Hence the system
will lose 1/135 of its mass each relaxation time by evaporation of stars
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7 What determines dynamical equilibrium?

7.1 Violent relaxation

dE

dt
=

d

dt
(1
2
v2 +Φ) = v · dv

dt
+
∂Φ

∂t
+ v · ∇Φ =

∂Φ

∂t
. (7.1)

Thus in a collisionless system the energies of stars can change only in so far as the mean grav-
itational field is fluctuating. If the system starts far from dynamical equilibrium, for a few
dynamical time it experiences ∼ critically damped oscillation, during which time Φ is strongly
time-dependent and energy is redistributed between stars (violent relaxation. This redis-
tribution is monopoly-capitalistic: the rich get richer and the poor poorer. The gravitational
energy released in the initial collapse is first fed into large-scale modes of oscillation, and these
rapidly Landau damp and in this way increase the kinetic energy of the particles to the value
required by the virial theorem for an equilibrium configuration.

Fig. 5. Violent relaxation of a system of point masses that starts far from equilibrium (BT08)

7.2 Cluster Evolution

The evolution of stellar clusters under the influence of 2-body scattering has been computed
in at least four ways:

1. Direct N-body modelling. This is expensive because one has to handle close encounters
and short-period binary orbits in parallel with following the evolution of tens of thousands
of stars for a Hubble time.
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Fig. 6. The distribution over energy of the particles at three times (0, 1.45tff , 18tff) during the relaxation
of Fig. 5. (BT08)

2. N-body integration of the CBE with stochastically applied velocity changes that generate
the diffusion coefficients ∆v and ∆vi∆vj computed from 2-body scattering.

3. Following the cluster’s evolution when f(J) is subjected to stochastic changes that generate
orbit-averaged diffusion coefficients from 2-body scattering.

4. Evolution of a self-gravitating gas sphere with the thermal conductivity is computed from
the diffusion coefficients (Lynden-Bell & Eggleton, MNRAS, 191, 483, 1980).

Fig. 7 shows the evolution of an initial Plummer sphere computed by solving the orbit-
averaged F-P eqn (Takahashi, K, PASJ, 47, 561 1995). The cluster undergoes self-similar
evolution towards infinite central density; outside a core radius r0 the density becomes a power
law ρ ∼ r−2.23. In this zone the velocity distribution becomes slightly radially biased, but in
the original envelope (r > 1) it becomes almost completely radial. If τ is the time remaining
to the singularity, r0 ∝ τ0.53, the core mass M0 ∝ τ0.41, and the central relaxation time ∝ τ .
In fact τ ≃ 300trelax(0).

Unfortunately, reality is less exciting because core collapse will be averted by the formation
of a hard binary (and quite likely there were some present all along). Indeed, eq. (5.3) gives the
time tfst required for the first hard binary to form, and this becomes a smaller multiple of trelax
as the number N0 = M0/m of stars in the core dwindles. Once tfst drops below ∼ 300trelax,
the appearance of a hard binary becomes likely. Acording to (5.3), tfst < 300trelax for N0 ∼< 30,
so we expect a hard binary to appear not later than when N0 ≃ 30. The energy released by
the binary causes the core to expand and cool, arresting the outward flow of heat through the
power-law segment. If the number of stars in the cluster is large enough, the process of core
collapse followed by expansion can repeat (Fig. 8 from Breeden & Cohn, ApJ, 448, 672, 1995)
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Fig. 7. Evolution of a star cluster that starts as a Plummer model. Top: density, middle: slope of log-density
profile, bottom: velocity anisotropy profile 1− (σ2φ + σ2θ )/σ

2
r (Takahashi 1995)

Part II: Discs

8 How to heat a stellar disc

Gas clouds radiate energy and slump into near-circular orbits in galactic potential wells – a
circular orbit is the orbit that has least energy for a given angular momentum Lz. Hence stars
are born on nearly circular orbits, crowded into a small part of phase space. In action space (a
true 3d projection of 6d phase space) stars are born near the Jφ = Lz axis. The kinetic theory
of discs is all about the diffusion of stars away from this axis to increase entropy.
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Fig. 8. The approach to cluster core collapse and its aftermath for clusters with 7000 and 11,000 stars
(Breeden & Cohn 1995)

The diffusion is associated with stars moving to orbits of greater eccentricity and higher
inclination – the one motion increases the radial velocity dispersion in the disc, σr, the other
increases the vertical velocity dispersion σz. Thus the disc “heats”.

Disc heating does not require an external source of E:

∂H

∂Lz
=
∂H

∂Jφ
= Ωφ =

vc
R

In real discs the circular speed vc never rises as fast as R (in galaxies like ours vc ∼ const) so
Ωφ is a decreasing fn of R. Hence if a quantity of Lz can be transported from R1 to R2 > R1

a quantity of energy

δE = [Ωφ(R1)− Ωφ(R2)]δLz (8.1)

is made available for random as opposed to circular motion. Thus entropy increase is all about
shifting Lz outwards.

8.1 Molecular viscosity

Just as collisions of molecules in a gas give rise to viscosity, stellar encounters will cause
viscous transport of momentum – a shear flow distorts the local velocity distribution from a
Maxwellian, and encounters try to drive it back to a Maxwellian. The relaxation time (3.16)
is the time required to restore a disturbed Maxwellian and the timescale on which molecular
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viscosity redistributes angular momentum cannot be shorter than trelax, so let’s evaluate the
latter near the Sun.

trelax
σ3

2πG2mρ lnΛ
≃ σzt

2
z

2π ln Λ

σ2
z

Gm
, (8.2)

where we have used that tz = (Gρ)−1/2 ≃ 100Myr is the dynamical time for oscillations
perpendicular to the Galactic plane. Now σz ≃ 20 km s−1, which is about 70% of the Earth’s
orbital speed, so Gm/σ2

z ≃ 1.5R⊕ ∼ 10−5 pc and hence

trelax ≃ 0.1
200 km s−1

10−5 pc
(100Myr)2. (8.3)

Finally 1 km s−1 moves you ∼ 1 pc in 1Myr so trelax ∼ 109 Myr, way longer than the age of
the Universe. That is, molecular viscosity is far too weak to redistribute significant angular
momentum.

8.2 Empirical evidence for disc heating

Blue stars are massive and short-lived, while red stars have small masses & long lives. So if you
bin stars near the Sun by colour the mean age of stars in the blue bins is smaller than the mean
age of stars in the red bins. A plot of random velocities in the radial (U) and tangential (V )
directions shows a steady increase of σ with redness (B − V ) & thus age (Fig. 9 from Aumer
& Binney, MNRAS, 397, 1286, 2009). Part of this increase is due to encounters of stars with
massive gas clouds, but most arises from particle-wave interactions.
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Fig. 9. Random velocities of stars near the Sun when binned by colour B−V . The curves show components
in the radial (upper curves) and azimuthal (lower curves) directions (Aumer & Binney 2009)

9 Diffusion tensor from angle-action variables

Let’s compute the second-order diffusion tensor Dij for the orbit-averaged FPE. The potential
Φ has a dominant time-independent part φ0 and a fluctuating part, and we expand the latter
in the angle-action variables proper to Φ0:

Φ(x, t) = Φ0(x) + Φ1(x, t) = Φ0 +
∑

n

Φn(J, t) cos(n · θ+ ψn) (9.1)
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Hamilton’s equation for J is

J̇ = −∂H
∂θ

=
∑

n

nΦn(J, t) cos(n · θ+ ψn). (9.2)

To get a random change ∆ in J we need to integrate this equation for longer than the auto-
correlation time of Φ1. We expand the variables in powers of Φ1/Φ0:

J(t) = J0 +∆1(t) +∆2(t) + · · · and θ(t) = θ0 +Ω0t+ θ1(t) + · · · (9.3)

∆t is obtained by integrating (9.2) along an unperturbed orbit

∆1(t) =
∑

n

∫ T

0

dtΦn(J, t) sin(n · θ+ ψn)

=
∑

n

∫ T

0

dtΦn(J, t) sin[n·)θ0 +Ωt) + ψn].

(9.4)

We multiply this equation by itself and average over all phases θ0. After reordering the integrals
so the integral over θ0 is done first, the innermost integral is

(2π)−3

∫
d3θ0 sin[n · (θ0 +Ω0t) + ψn] sin[n

′ · (θ0 +Ω0t
′) + ψn′ ] (9.5)

Using 2 sinA sinB = cos(A−B)− cos(A+B) and that the integral of any cosine that depends
on θ0 will vanish, we conclude that the innermost integral is

1
2 cos[n ·Ω0(t− t′)] δnn′ . (9.6)

Next we take the ensemble-average of the random variable Φn under the assumption that it’s
a stationary random process so its autocorrelation depends only on the lag t− t′:

〈Φn(J, t)Φn(J, t
′)〉 = cn(J, t− t′). (9.7)

Now

〈∆i∆j〉 = 1
2

∑

n

ninj

∫ T

0

dt

∫ T

0

dt′ cn(J, t− t′) cos[n ·Ω0(t− t′)]

= 1
4

∑

n

ninj

∫ T

−T

dv cn(J, v) cos(n ·Ω0v)

∫ ‘2T−|v|

|v|

du

= 1
2

∑

n

ninj

∫ T

−T

dv cn(J, v) cos(n ·Ω0v)(T − |v|).

(9.8)

We are choosing T to be bigger than the autocorrelation time, so c(J, v) is non-negligible only
for v ≪ T . Hence we can approximate T − |v| ≃ T . With this approximation 〈∆i∆j〉 becomes
proportional to T , and the diffusion coefficient is the constant of proportionality, i.e.

Dij =
1
2

∑

n

ninj c̃n(J,n ·Ω), (9.9)

where

c̃n(J, ω) =

∫ T

−T

dv cn(J, v) cos(ωv) =

∫ T

−T

dv 〈Φn(J, t)Φn(J, t− v)〉 cos(ωv) (9.10)

is the power spectrum of the fluctuations.

Equation (9.9) implies that a star is able to diffuse through action space to the extent that
the fluctuations contain power at one of its natural frequencies n · Ω. If the fluctuations are
narrow-band because they are associated with normal modes of the system, only a minority of
stars will diffuse – those that resonate with the oscillations.
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9.1 Wave-particle scattering

Consider a perturbing potential

Φ1(R,φ, t) ∝ ei(kR+mφ−ωt) (9.11)

Depending on the values taken by k and m, this describes a steadily rotating pattern that can
range from axisymmetry (m = 0) to barred (k = 0) through spirals of varying pitch angle. In
a frame that rotates at angular velocity

ωp = ω/m (9.12)

the potential is stationary. Hence the in this frame the Hamiltonian is a constant of motion.
This Hamiltonian is Jacobi’s invariant

H = E − ωpJφ. (9.13)

Hence changes in the energy E (numerical value of the time-dependent Hamiltonian in an
inertial frame) and changes in angular momentum Jφ are related by

δE = ωpδJφ. (9.14)

The energy associated with random motion is the difference

Erand = E −Ecirc(Jφ)

between a star’s energy and the energy of a circular orbit with its angular momentum. Differ-
encing this equation and using equation (9.13) we get

δErand =

(
ωp − ∂Ecirc

∂Jφ

)
δJφ = (ωp − ωcirc)δJφ. (9.15)

Hence inside the corotation resonance (where stars orbit at the same angular velocity as the
pattern), Erand is increased if stars donate angular momentum to the wave, and outside coro-
tation Erand is increased when stars absorb angular momentum from the wave. At corotation
absorption or emission of angular momentum leaves Erand unchanged.

The key resonances are the inner Lindblad resonance (ILR) where Ωr = m(Ωφ −
ωp) (stars overtake the pattern at the frequency of their radial oscillations) and the outer

Lindblad resonance (OLR) where Ωr = m(ωp − Ωφ) (the pattern overtakes stars at their
radial frequency). A disc would heat if waves gathered Jφ at the ILR and deposited it at the
OLR.

Fig. 10. A Lindblad diagram [(E,Lz) plane] with arrows showing motion of stars when resonantly scattered
(Sellwood & Binney 2002)
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10 Wave mechanics of discs

The stars of a disc are coupled to one another by gravity, so it is to be expected that waves can
propagate through the disc. Perhaps the easiest waves to imagine are bending waves: suppose
we displace downward a patch of the disc. Then the attraction of the undisplaced stars will
pull our patch back up, and our patch will pull the other stars down. So we expect a ripple
of vertical displacement to propagate out from our patch like a ripple propagating along a
chain. Differential rotation within the disc will make the dynamics of the ripples complex, but
it’s intuitively clear that stars throughout the disc will eventually be affected by our original
displacement.

Galactic discs do show systematic distortions from planarity, but probably more important
are waves of displacement within the disc. A systematic variation of the direction of the major
axes of the elliptical orbits of stars generates a spiral pattern of stellar density

Fig. 11. Left: a series of nearly circular ellipses. Right: the same ellipses with systematically rotated
principal axes (BT08)

This pattern gives rise to a spiral perturbation to the gravitational field, which perturbs
orbits, thus over time modifying the density distribution. It is physically plausible that as a
consequence a spiral pattern will propagate through the disc.

We can get insight into wave propagation with a local (WKB) analysis by positing that
the wavelength of the waves is small compared to R. There are 2 important cases: (i) tightly
wound spirals and loosely wound waves at corotation.

10.1 Tightly wound spirals

Φ1(R,φ, t) = ǫei(kR+mφ−ωt) (10.1)

where kR ≫ 1. By solving Poisson’s equation in cylindrical coordinates (in which it separates),
it’s not hard to show that this perturbation is generated by a thin sheet in which the surface
density of stars is

Σ1 = − |k|
2πG

Φ1. (10.2)

Φ1 perturbs the DF to f0(J)+f1(θ,J, t). We compute f1 from the linearised CBE, integrate over
v to obtain the response density Σresp(R,φ, t) and obtain the Lin-Shu-Kalnajs dispersion

relation by equating Σresp to Σ1:

m(ωp − ωcirc)
2 = Ω2

r − 2πGΣ0|k|F(s, χ) stars

m(ωp − ωcirc)
2 = Ω2

r − 2πGΣ0|k|+ c2sk
2 gas.

(10.3a)

Here

s ≡ ω −mΩφ

Ωr
(10.3b)
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is the ratio of driving frequency a star experiences to its natural radial frequency, while

χ ≡
(
σRk

Ωr

)2

(10.3c)

is the square of the ratio of typical radial excursions σR/(Ωr/2π) to the wavelength 2π/k, and
F is the reduction factor

F(s, χ) ≡ 2(1− s2)
e−χ

χ

∞∑

l=1

Il(χ)
1− s2/l2

, (10.3d)

where Il is a modified Bessel function. F is a decreasing function of increasing χ and F → 1
as χ→ 0.

The second line in (10.3a) is the dispersion relation for tightly-wound spiral waves in an
isothermal gas disc. It states that the frequency at which a star is shaken m(ωp−ωcirc) should
be equal to the quadrature sum of the radial frequency and the sound-wave frequency kcs less
the amount 2πGΣ0|k| by which gravity makes the disc “squishy”. This squishiness factor is
least effective at long wavelengths because at these wavelengths the field lines can leak most
easily into empty space. At the very shortest wavelengths the kcs dominates: waves become
sound waves.

The Lin-Shu-Kalnajs relation for a stellar disc in the first line of (10.3a) differs from the
gas relation in trading the kcs term for the presence of the reduction factor F , which reduces
the effectiveness of gravity when the stars have a large velocity dispersion σR. It’s to be
expected that increased velocity dispersion will affect the stellar dynamics much as increased
sound speed will the gas dynamics.

For σR > 0 or cs > 0 the right sides of the dispersion relations (10.3a) are > 0 for very
small and very large k with a minimum in between. If the right side dips below zero, the disc
is unstable. When σR = 0, the stellar disc is unstable for

k > kcrit ≡
Ω2

r

2πGΣ0
. (10.4)

The disc is stable for all k provided

1 < Q ≡ ΩrσR
3.36GΣ0

, (10.5)

which is called Toomre’s Q.

When the disc is stable, the dispersion relation cannot be satisfied with ωp very close to
ωcirc: the region around corotation doesn’t support waves.

10.2 Swing amplifier

Although the region around corotation does not support steady, sinusoidally oscillating tightly-
wound waves, solutions can be found (Goldreich & Lynden-Bell 65 for gas, Julian & Toomre
1966 for stars) for short-wavelength waves and these have an interesting temporal evolution.
Differential rotation shears an initially leading-spiral group of waves into a trailing group and
in the process amplifies it. The factor by which the packet is amplified depends sensitively on
Q and

X ≡ kcrit
kφ

. (10.6)

and for Q ≃ 1.5 can exceed 10. This process of amplification of waves as they are sheared from
leading to trailing is the swing amplifier.
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Fig. 12. Swing-amplification factor for three values of Toomre’s Q as a function of X (eq. (10.6) (Toomre
1981)

10.3 Discs as lasing cavities

Combining tightly-wound running-wave solutions with the swing amplifier yields the following
picture of disc dynamics (Toomre in “The structure and evolution of normal galaxies, eds S.M.
Fall and D. Lynden-Bell, CUP, 1981). Noise-generated leading waves propagate towards CR,
are there swing amplified and reflected to trailing waves that propagate inwards. If these are
somehow reflected to leading waves, they will again be amplified and reflected at CR and the
disc will be unstable. If they reach a Lindblad resonance, they will be Landau damped and
the disc will be stable. This picture is supported by (i) the empirical fact that discs with
slowly-rising circular speed vc tend to be unstable while discs with steep central rises in vc to
an approximately constant value are stable, and (ii) the morphology of the normal modes of
the small number of discs for which these have been computed.

N-body simulations of formally stable discs were until recently puzzling. If a simulation
of such a disc is continued long enough, spiral structure eventually grows to order unity and
a strong bar forms from the disc. The more particles there are in the disc, the longer it takes
for the bar to form (Fig. 13). Power spectra at three stages in the evolution of a 50 M particle
simulation show activity near the ILR (Fig. 14 from Sellwood, ApJ 751, 44, 2012)

Sellwood (2012) and Sellwood & Carlberg (2014) interpret this as follows. Swing amplified
noise heats the disc at its ILR. The heated region behaves like a half-silvered mirror and reflects
some of the swing-amplified power en route to an ILR that lies inside the first ILR. So some
once-amplified noise is amplified again, and is again part-reflected. Eventually all waves of
this second episode get through to their ILR, and heat the disc, creating a new and more
reflective half-silvered mirror. This cycle repeats until the disc has a very irregular DF and
swing amplification becomes highly effective.

The disc is more strongly heated at ILR than at OLR because at ILR stars stay on
resonance as their actions ar shifted whereas at OLR they quickly go off resonance (Fig. 15).
Activity starts inside & spreads outwards as the inside heats.
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Fig. 13. The amplitude of fluctuations as a function of time in 5 simulations of the same galactic disc with
increasing particle number. The t scale runs 0 to 3000 units. (Sellwood 2012)

Fig. 14. The contours show the amplitude of the temporal FT of the m = 2 component of the density over 3
time intervals in the simulation of Fig. 13 that has 50M particles. The frequency ω = mωp is plotted vertically.
The full curve marks mωcirc at each radius and the dashed curves show mωcirc ±Ωr, i.e., the frequencies that
put an ILR or OLR at the radius. (Sellwood 2012)

Fig. 15. Changes to the DF in the 50 M particle simulation of Fig. 13. Blue contours mark increased
density, red contours decreased density. The dashed lines indicate ILR, CR and OLR for ωp = 0.25. Solid cyan
lines show trajectories of particle at constant Jacobi invariant.
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Fig. 16. Contours show the amplitude of the temporal Fourier transform of the m = 2, 3, 4 component of
the density at each radius in a three-dimensional, 20M particle simulation of a disc. The top row covers the 1st
half of the simulation, the bottom row the 2nd half. The full curve shows mωcirc while the dashed curves show
mωcirc ± Ωr. (Sellwood & Carlberg 2014)

Fig. 17. Spatial structure of the modes marked in green on Fig. 16. (Sellwood & Carlberg 2014)

10.4 Derivation of the Lin-Shu-Kalnajs dispersion relation

We write f(θ,J, t) = f0(J) + f1(θ,J, t), where (θ,J) are the angle-action variables of the
equilibrium system defined by f0(J). Since the Poisson bracket {, } is linear in each slot the
linearised CBE ∂f/∂t = {H, f} becomes

∂f1
∂t

= {H0, f1}+ {H1, f0} = −Ω0 ·
∂f1
∂θ

+
∂Φ1

∂θ
· ∂f0
∂J

(10.7)
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This linear equation for f1 is time-translation invariant so we may seek solutions in which f1
and Φ1 are ∝ e−iωt, i.e.,

f1(θ,J, t) =
∑

n

δfn(J)e
i(n·θ−ωt)

Φ1(θ,J, t) =
∑

n

δΦn(J)e
i(n·θ−ωt)

When these expansions are inserted into (10.6) we can equate coefficients of ein·θ to obtain

δfn(J) =
n · ∂f0/∂J
n ·Ω0 − ω

δΦn(J)

This equation is very similar to one that occurs in Landau’s analysis of a plasma, with J

replacing n.

Our next step is to expand Φ1 from (10.1) in angle-action coordinates. We can do this
if we adopt the epicycle approximation. In this approximation we linearise the equations
of motion of a star of angular momentum Lz around the circular orbit with this angular
momentum. This circular orbit has radius Rg, and provides the guiding centre. Our star
moves on an elliptical orbit around the guiding centre as the latter moves on a circular orbit
around the galaxy

Fig. 18. An elliptical Kepler orbit as an elliptical epicycle on a circular guiding-centre orbit

In this approximation

R(J,θ) = Rg(Jφ) + a(J) cos θr, φ(J,θ) = θφ +
γa

Rg
sin θr (10.8)

where

a(J) =

√
2Jr
Ωr

and γ = 2Ωφ/Ωr. (10.8b)

In the epicycle approximation, we neglect the Jr dependency of Ω, so Ω(J) ≃ Ω(0, Jφ), the
components of this vector being the epicycle frequencies. It follows that the Fourier decom-
position of Φ1 is

Φ1(R,φ, t) = ǫei(kR+mφ−ωt)

= ǫeikRg exp(ika cos θr)e
imθφ exp

(
i
mγa

Rg
sin θr

)
e−iωt.

(10.9)

Now we use

exp

[
i

(
ka cos θr +

mγa

Rg
sin θr

)]
= exp[iaK sin(θr + α)]

=
∑

l

Jl(Ka)eil(θr+α),
(10.10a)
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where

α(Jφ) ≡ arctan

(
mγ

kRg

)
K(Jφ) ≡

√
k2 +

m2γ2

R2
g

(10.10b)

are, respectively, the pitch and the total wavenumber of the spirals. We can now write Φ1 in
the form

Φ1(θ,J, t) = ǫ

∞∑

l=−∞

ei(kRg+lα)Jl(Ka)ei(lθr+mθφ−ωt), (10.11)

which implies that
δΦ(l,m,0)(J) = ǫei(kRg+lα)Jl(Ka), (10.12)

so

δf(l,m,0)(J) = ǫ
n · ∂f0/∂J
n ·Ω0 − ω

ei(kRg+lα)Jl(Ka) n = (l,m, 0). (10.13)

Now we need to integrate this perturbed distribution function over velocities to determine the
perturbed density and compare it with (10.2), the density required to generate the assumed
Φ1. We exploit the fact that (x,v) and (θ,J) are both systems of canonical coordinates, so
d2xd2v = d2θd2J:

Σresp(R,φ, t) =
ǫ

R

∫
d2Jd2θ δ

(
φ− θφ − γa

Rg
sin θr

)
δ(R −Rg − a cos θr)

×
∑

n=(l,m)

n · ∂f0/∂J
n ·Ω0 − ω

ei(kRg+lα)Jl(Ka) ei(n·θ−ωt).
(10.14)

We use the Dirac functions to do the integrals over θφ and Jφ. Subsequently every occurrence
of Rg should be replaced by R − a cos θr but by virtue of the tight-winding approximation
we neglect the difference between Rg and R except when it occurs multiplied by k in an
exponential. Then

Σresp(R,φ, t) =
ǫ

R
ei(kR+mφ−ωt) dJφ

dRg

∣∣∣∣
Rg=R

∑

l=−∞

eilα
∫

dJr Jl(Ka)
n · ∂f0/∂J
n ·Ω0 − ω

×
∫

dθr exp
[
i
(
lθr −m

γa

R
sin θr − ka cos θr

)]
n = (l,m).

(10.15)

We have dJφ/dRg = RgΩφ/γ and for f0 we use

f0(J) =
γΣ0

2πσ2
e−ΩrJr/σ

2

(10.16)

which generates a biaxial Gaussian velocity distribution in the epicycle approximation. We
again use (10.10) to express the exponential of sinusoids as a sum of Bessel functions times
exponentials. That done the integral over θr can be done, leaving

Σresp(R,φ, t) =
ǫΩ2

rΣ0

σ4
ei(kR+mφ−ωt)

∑

l=−∞

−l
lΩr +mΩφ − ω

∫
dJr |Jl(Ka)|2e−ΩrJr/σ

2

=
ǫΩrΣ0

σ2
ei(kR+mφ−ωt)

∑

l=−∞

−lIl(χ)e−χ

lΩr +mΩφ − ω
,

(10.17)

where Il is a modified Bessel function and χ is defined by (10.3c). The Lin-Shu-Kalnajs
dispersion relation (10.3a) follows by equating Σresp to Σ1 given by (10.2).


