
Prof J.J. Binney 3rd year: Mathematical physics option

Group Theory I

1. Consider the set H ≡ {hi, i = 1, 3}

h1 =
(

0 1
1 0

)
, h2 =

(
1 0
0 −1

)
, h3 =

(
0 −i
i 0

)
.

Construct the multiplication table for H and explain why it is not a group. What additions are necessary
to make H into a group?

2. Consider the symmetric group S3. It has elements {p123, p132, p312, p213, p231, p321}, where

pijk ≡
(

1 2 3
i j k

)
Construct the multiplication table and determine whether S3 is Abelian. What are the classes? What
subgroups does S3 have?

3. Label the vertices of a square by the complex numbers wn = eiπ(2n+1)/4, n = 0, 1, 2, 3. Rotations
of the square can then be generated by multiplying the wn by a complex number z. Find the z’s
which generate symmetries of the square and thus obtain the multiplication table of C4. What are the
subgroups of C4? Can C4 be expressed as a direct product group?

Can all symmetries of the square be generated by multiplying the wn by z? Explain why your
answer is determined by the Abelian or non-Abelian nature of the groups involved.

4. Find the multiplication table of the direct product group C2 × C3.

5. Show that the set {p1, p2, p3} (in the notation of the lecture notes) of elements of D3 may be written
{e, r1, r2}pi or as pj{e, r1, r2} for suitable i, j. It follows that the set of elements of D3 may be written

{e, r1, r2}{e, pi} or as {e, pj}{e, r1, r2}.

Why is D3 nevertheless not a direct product group?
Are there any other right cosets of D3 other than {p1, p2, p3}?



Prof J.J. Binney 3rd year: Mathematical physics option

Group Theory II

1. (’90) Let N = {n1, . . . , nn} be the set of elements of the group G = {a1, . . . , ag} which commute
with a particular element a. Show that N is a subgroup of G.

The set Nai = {n1ai, . . . , nnai} is the right coset of N . Show that any two right cosets of N are
either identical or have no elements in common.

Let {N t1, . . . ,N th} be a set of right cosets of N which together contain all the elements of G and
are generated by the group elements {t1, . . . , th}. Show that the set of all elements conjugate to a
contains h distinct elements which can be written as

{t−1
1 at1, . . . , t

−1
h ath}.

Illustrate these result by considering the case G = D3 (the dihedral group) and N = {e, p1}.
Construct the three right cosets of N which together contain all the elements of D3, and obtain the
elements conjugate to p1. [You may use p2 = r2p1 = p1r1 and p3 = r1p1 = p1r2.]

2. Construct a four-dimensional representation of C3.

3. Reduce the 4-dimensional representation of the last question into its constituent irreps.

4. (i) Prove that the vector space spanned by xn, yxn−1,. . . ,yn is (n+ 1)-dimensional. (ii) Reduce the
representation of C3 provided by the xn,. . . to its consituent irreps
[Hint: you may care to consider the transformation properties of the n + 1 objects zp ≡ (x + iy)p(x −
iy)n+1−p.]

5. Using the basis (x3, x2y, y2x, y3) construct a 4-dimensional representation of D3. Reduce it to
irreps.
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Group Theory III

1. Calculate the characters for the 4-dimensional representation of D3 that you found in the previous
problem set. Hence reduce that representation into irreps of D3.

Find the reduction of the 6-dimensional representation in which the classes (E, 2C3, 3C2) have
characters (6, 3,−2).

2. (’91) The tetrahedral group T is of order 12 and can be generated by taking powers and products of

R1 ≡

 1 0 0
0 −1 0
0 0 −1

 , R2 ≡

 0 0 1
1 0 0
0 1 0

 .

Calculate the orders of R1 and R2. Interpret the results geometrically. Find two elements of T which
are conjugate to R1.

An electron in an atom has 9 degenerate energy eigen-states with wave-functions

φi = xif(r)
ψij = xixjg(r)

i, j = 1, 2, 3,

where f and g are functions of the radial coordinate r. These form a basis for a 9-dimensional rep of
T . Find linear combinations which form a basis for irreps of T .

The system is perturbed by the additional potential V = V0xyz. To what degree is the degeneracy
removed?

3. (’90) A particle moves in the (x, y) plane in a potential with dihedral symmetry D4 (and symmetry
axes aligned with the coordinate axes). The wave-functions of degenerate energy eigen-states are ψx =
xf(r) and ψy = yf(r), where r =

√
x2 + y2. Find the eight 2 × 2 matrices which describe how these

states transform under D4. Show how the elements of D4 are divided into conjugacy classes.
Calculate the characters of the 2×2 rep of D4 obtained in the first part of this question. Show that

they are consistent with the irreducibility of the rep. Use the orthonormality relations of characters to
obtain a character table for all the irreps of D4.

Two particles of equal mass placed in the states ψx and ψy interact through a potential which
preserves D4 symmetry. To which irreps of D4 do the resulting states belong?

4. Show that

sin(j1 + 1
2 )φ sin(j2 + 1

2 )φ
sin2 1

2φ
=

sin(j1 + j2 + 1
2 )φ

sin 1
2φ

+
sin(j1φ) sin(j2φ)

sin2 1
2φ

.

Hence, or otherwise, show that the character χ(j)(φ) of a rotation through angle φ in the spin-j irrep
of SU(2) satisfies

χ(j1)(φ)χ(j2)(φ) = χ(j1+j2)(φ) + χ(j1+j2−1)(φ) + · · ·+ χ(|j1−j2|)(φ).

Explain the significance of this result for the decomposition into irreps of the representation D(j1)×D(j2)

of SU(2).

5. A system has symmetry group O. Perturbations are applied which reduce the symmetry to (i) T ,
(ii) C3v, (iii) C4. In each case find how energy levels belonging to the irreps E, T1 and T2 of O are split
by the perturbation.

6. Find the selection rules for electric dipole transitions when the symmetry group of the unperturbed
Hamiltonian is (i) D3, (ii) O.



Group Theory III 2

7. Show that when the complex 2-vector η is defined as in Box 2, we have

x = η† · σx · η y = η† · σy · η z = η† · σz · η

where η† is the complex-conjugate-transpose of η and

σx ≡
(

0 1
1 0

)
; σy ≡

(
0 −i
i 0

)
; σz ≡

(
1 0
0 −1

)
are the Pauli spin matrices.

8. Show that “rotating” η with the matrix

sz(φ) ≡
(

e−iφ/2 0
0 eiφ/2

)
has the effect of rotating the (x, y, z) coordinates through φ about the z axis. What happens to η when
the (x, y, z) axes are rotated through 2π?

Show that when η suffers an infinitesimal “rotation”

δη = i
2δθσx · η,

the point r = (x, y, z) is rotated by δθ about the x axis.

9. Verify that |r1 − r2| is invariant when the ri are mapped into new vectors r′i by the transformation
generated by a unitary matrix M acting on Weyl spinors ηi as described in Box 2.

10. What transformation of the vector η generates the transformation r → −r?

11. Explain the connection between Box 2 and Example 14.


