GEOMETRY & PHYSICS: PROBLEMS

1. Let M_1, M_2 and M_3 be manifolds (not necessarily of the same dimension) and let $\alpha : M_1 \to M_2$ and $\beta : M_2 \to M_3$, be C^{∞} maps between them. Show that the induced Jacobian maps α_* etc satisfy $(\beta \circ \alpha)_* = \beta_* \circ \alpha_*$.

2. Show that d(fg) = f(m)dg + g(m)df for $f, g \in \mathcal{F}_m$.

3. Let X, Y and Z be vector fields defined in a neighbourhood of m, and such that $Z_m = 0$, and let ω be a 1-form near m. Prove that

$$d\omega(X+Z,Y) = d\omega(X,Y)$$

and explain the significance of this result.

4. Consider a manifold with a symplectic form ω . Let \mathcal{F} and \mathcal{G} be the vector fields that ω associates with the functions f and g, respectively. Show that the Lie bracket $[\mathcal{F}, \mathcal{G}]$ is the vector field associated with the Poisson bracket $\{f, g\}$.

5. Show that the metric tensor of a Riemannian manifold satisfies the Schwartz inequality, $g(X,Y)^2 \leq g(X,X)g(Y,Y)$, and the triangle inequality, $g(X+Y,X+Y)^{1/2} \leq g(X,X)^{1/2} + g(Y,Y)^{1/2}$.

6. Let Ω be the natural volume *n*-form of an orientable, *n*-dimensional, Riemannian manifold and $\partial/\partial \phi^i$ be an arbitrary set of base vectors. Show that

$$\Omega = \left| \det(g_{ij}) \right|^{1/2} \mathrm{d}\phi^1 \wedge \cdots \wedge \mathrm{d}\phi^n.$$

Hence show that $\Omega_{ij...k} = \left| \det(g_{ab}) \right|^{1/2} \epsilon_{ij...k}$, where ϵ is the usual Levi-Civita symbol.

7. Show that in 3d Euclidean space, with A and B 1-forms

$$A \times B = *(A \wedge B)$$
$$\nabla \times A = *dA$$
$$\nabla \cdot A = d * A.$$