
Prof J.J. Binney 4th year: Option C6

Classical Fields III

1. The standard covariant derivative, ∇µpν = ∂µp
ν + Γνλµp

λ, acts on 4-vectors that inhabit the four-
dimensional “tangent space” of the space-time manifold. In particle physics other vector spaces are
associated with each event. For example, a complex scalar field ψ associates with each event x a point
in the complex plane – a two-dimensional vector space. Let e1 and e2 be two unimodular complex
numbers. Show that we can write ψ = ψ1e1 + ψ2e2, where the ψa are real numbers.

If we make a different choice of basis numbers ea at each event x, ∂µψ
a will not vanish even if ψ is

the same everywhere. To detect this hidden equality we define a connection

Dµψ
a = ∂µψ

a + Γabµψ
b,

where Γµ is a 2× 2 matrix.

In quantum mechanics an e.m. field affects the dynamics through the replacement of the usual
momentum operator by pµ = −ih̄{∂µ − i(q/h̄)Aµ}. Show that for an appropriate choice of Γµ this can
be written pµ = −ih̄Dµ.

2. The curvature tensor is most conveniently defined by (∇µ∇ν −∇ν∇µ)Zα = Rα
βµνZ

β , which holds
for any field Z. From this definition derive an expression for R in terms of the Christoffel symbols.

In the notation of the previous problem, we define the curvature tensor for a scalar complex field
through (DµDν −DνDµ)ψ

a = Ra
bµνψ

b. Assume that, as in the previous problem, summation over the
index of ψ can be absorbed into complex multiplication, so we can write simply (DµDν −DνDµ)ψ =
Rµνψ. Show that Rµν = −i(q/h̄)Fµν , where Fµν = ∂µAν − ∂νAµ is the Maxwell field tensor.

3. With coordinates xµ = (t, r, θ, φ) the Schwarzschild metric may be written

gµν =







−c2D 0 0 0
0 D−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ






where







D ≡ 1− rs
r
,

rs ≡ 2GM/c2.

Show that the only non-vanishing Christoffel symbols of the form Γtµν are

Γtrt = Γttr =
D′

2D
.

From the equation of motion of a photon of momentum h̄k, show that in the Schwarzschild metric
the time component ω ≡ k0 of a photon’s 4-vector obeys

d(ωD)

ds
= 0 where the photon’s path xµ(s) satisfies kµ =

dxµ

ds
,

and give a physical interpretation of this equation.

4. Derive the form of the energy-momentum tensor associated with a uniform magnetic field of strength
B parallel to the x-axis. In which direction or directions does the field exert pressure?

5. A rope made of nylon of density ρ and cross-section A lies along the x-axis under tension F . Write
down the form of the energy-momentum tensor inside the rope. Show that requiring that the energy
density in the rope be positive for all observers, limits the permissible tension F .

6. A metric for the interior of a cosmic string is

ds2 = −c2dt2 + r20(dθ
2 + sin2 θdφ2) + dz2,

where r0 is a constant. Show that the only non-vanishing Christoffel symbols are

Γθφφ = − 1
2
sin 2θ and Γφθφ = Γφφθ = cot θ.

Given that the only non-vanishing components of the Ricci tensor are Rθθ and Rφφ and that the edge
of the string is at θ = θm, show that the tension in the string is F = c4(1− cos θm)/(4G).
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7. With (t, x, y, z) having their usual meanings, double-null coordinates for space-time are defined by

u = ct− x
v = ct+ x

y′ = y

z′ = z .

Write down the Minkowski line element in double-null coordinates.

Consider the line element
ds2 = −dudv + f2dy2 + g2dz2,

where f(u) and g(u). Show that the only non-vanishing Cristoffel symbols are

Γvyy = 2ff ′ , Γvzz = 2gg′ , Γyyu = Γyuy = f ′/f , Γzzu = Γzuz = g′/g .

Hence, or otherwise, show that trajectories on which the spatial coordinates x, y, z are constant are
geodesics.

The metric’s Ricci tensor vanishes provided

f ′′

f
+
g′′

g
= 0,

where a prime denotes differentiation with respect to u. Show that this equation is satisfied by the
choice

f(u) = 1 +
u

L
Θ(u) , g(u) = 1− u

L
Θ(u),

where L is a constant and Θ(u) is the Heaviside step function that vanishes for u < 0 and is unity for
u > 0.

For the above choice of f and g, determine as a function of time the invariant distance between
particles that move on x = 0, y = 0, z = ±a, and similarly the distance between particles that move on
x = 0, y = ±a, z = 0.

Interpret your results physically.

8. The Robertson-Walker metric may be written

ds2 = −dt2 + a2

[

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2)

]

.

Explain the significance of the quantities a and K, and of the world-lines (r, θ, φ) = constant.

Show that photons can travel down curves (θ = constant, φ = constant).

Given that a = (t/t0)
2/3 for K = 0, find the distance now (t0) in the case K = 0 between us and a

galaxy from which we are currently receiving photons emitted at t1.

Suppose the Universe is closed with the Earth at the point r = 0. A distant galaxy of radius R is
currently distance D from us with its centre on the line θ = 0. Show that its rim is at angular coordinate

θ =
(1 + z)R

√
K

sin(D
√
K)

.

where z is the galaxy’s redshift. Simplify this formula for the case z ¿ 1 and discuss the difference
between the general result and this case.

9. Show that for any two vectors u, v we have

(uα∇α)vβ − (vα∇α)uβ = [u, v]β ,

where the vector [u,v] is defined by

[u, v]β ≡ uα∂αvβ − vα∂αuβ .
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For each fixed ε, xα(τ, ε) defines a geodesic, with τ the affine parameter. Show that

[

dx

dτ
,
dx

dε

]β

= 0.

Show further that

(ẋα∇α)(ẋβ∇β)
dxγ

dε
= Rγ

λµν ẋ
λẋµ

dxν

dε
,

where ẋ ≡ dx/dτ and the curvature tensor R can be taken to be defined by

(

(uα∇α)(vβ∇β)− (vα∇α)(uβ∇β)− [u, v]α∇α
)

wγ = Rγ
λµνu

µvνwλ,

with u, v and w arbitrary vectors.

Two masses are dropped from points a small height ε apart. Show that just after they are released,
the separation δx between them satisfies

D2δxγ

Dt2
= c2Rγ

00νδx
ν ,

where x0 ≡ ct. Hence show that the gravitational field at the Earth’s surface has the curvature compo-
nent

Rz
00z = 2g/(c2R)

where z is an upwards directed coordinate, g is the usual acceleration due to gravity, and R is the
Earth’s radius.


