
Introduction to SymmetriesI.J.R.AitchisonMarch 27, 2001Lecture 7:Symmetry in Lagrangian Field Theory.First, a crash course in Lagrangian �eld theory!The basic idea is to start from an action principle which seems to work with everything (optics, mechanics, quantummechanics, Q.F.T., strings). In mechanics the action S is de�ned as,S = Z t2t1 L (q(t); _q(t)) dt:q(t) denotes the position of particle as a function of time, t, _q(t) is its velocity. We think of the q(t)'s as trajectories.The actual path taken (in classical mechanics) is the one for which the integral S is least; this is known as Hamilton'sprinciple of least action. We shall now �nd the equation for the least action path, the classical trajectory. Taking thepath of least action (which we are trying to �nd) to be q(t), consider a small variation away from q(t), q(t) + �q(t),which has the same end points (�q (t1) = �q (t2) = 0). If q(t) is the path for which S is least, then the resulting changein S has to be zero: �S = Z t2t1 �@L@q �q(t) + @L@ _q � _q(t)�dt = 0where � _q(t) = d�q(t)dt . Integrate the last term by parts:Z t2t1 @L@ _q � _q dt = Z t2t1 @L@ _q d�q(t)dt dt = �@L@ _q �q�t2t1 � Z t2t1 ddt �@L@ _q � �qdt:The �rst term h@L@ _q �qit2t1 vanishes as �q (t1) = �q (t2) = 0 and so�S = Z t2t1 �@L@q � ddt �@L@ _q �� �qdt:When the action is extremized we will have �S = 0 as q is varied. This must hold for arbitrary changes �q(t) . Theonly way this can be true is for the quantity multiplying �q(t) in the preceding integral to vanish:@L@q � ddt �@L@ _q � = 0:This is the Euler-Lagrange equation. It is basically the �equation of motion� for q(t) in this way of doing business;note that we are back to a formulation in terms of a di�erential equation having started o� rather di�erently, with anintegral!So what is L? Usually L = T �V i.e. the kinetic energy minus the potential energy e.g. for a particle in a potentialV (q), L = 12m _q2 � V (q)) @L@q = @V (q)@q and ddt �@L@ _q � = m�q1



) m�q = @V (q)@q ;as given by Newton.Now we want to apply the principle of least action to �elds. This means that we have to deal with a �q � at everypoint in space : q(t)! � (x; t)and correspondingly Z Ldt! Z �Z (Ldx)� dt:The previous � L� has become a density, but we are not troubling to change the notation. L is now a function of� (x; t) ; @�(x;t)@t and @�(x;t)@x in 1-dimension. The action is nowS = Z Z L dxdt:As before, �(x; t) will be determined from the condition that S is stationary under small variations �(x; t)! �(x; t)+��(x; t). Under such variations, S changes by�S = Z Z 8<:@L@� ��+ @L@ �@�@x���@�@x�+ @L@ �@�@t ���@�@t �9=;dxdtBy analogy with the �rst time we calculated �S, here we integrate the second and third terms by parts and as beforewe end up with four terms two of which vanish because �� = 0 at the end points (as before, we are dealing with �xedend points); so �S = Z Z 8<:@L@� � @@x 0@ @L@ �@�@x�1A � @@t 0@ @L@ �@�@t�1A9=; �� dxdt:Requiring, as before, that this variation is zero for em arbitrary ��, we deduce that the term in curly brackets mustvanish: ) @L@� �r:� @L@ (r�)�� @@t 0@ @L@ �@�@t �1A = 0which is the Euler-Lagrange �eld equation for �(x; t).Example: L = 12c2 �@�@t �2 � 12 �@�@x�2E-L eqn) @@x ��@�@x�+ @@t �c2 @�@t � = 0) 1c2 @2�@t2 = @2�@x2the classical wave equation!Here are a few examples of important �eld Lagrangians:� The Schroedinger Lagrangian: L = i � � 12m (r ( �)) (r )� The Dirac Lagrangian: L =  (i
�@� �m) 2



� The Klein-Gordon Lagrangian: L = 12 �@�@t �2 � 12 (r�) (r�)� 12m2�2� The Maxwell Lagrangian: L = �14 (@�A� � @�A�) (@�A� � @�A�) = �14F��F ��Ok, now we are ready to go on to symmetries in �eld theories.Noether's Theorem - Global Symmetries.Suppose we have several �elds, scalar to start with, �r(x); where x is now the 4-D vector (t;x) with the same mass,and with interactions perhaps, such that L is invariant under a transformation among the �'s of the form�r (x)! �0r (x0) = �0r (x)� i��rs�s (x)for some coe�cients �rs, and for in�nitesimal �. Obviously this is like an in�nitesimal SO(3), SU(2) or SU(3) trans-formation. If L is invariant under the transformation, then�L = @L@�r ��r + @L@ (r�r) :� (r�r) + @L@ �@�r@t ���@�r@t � = 0:From the Euler-Lagrange equations we've just derived,@L@�r = r:� @Lr�r�+ @@t 0@ @L@ �@�r@t �1A :Using this in the previous equation,r:� @L@ (r�r)� ��r + @@t 0@ @L@ �@�r@t �1A ��r + @L@ (r�r) :r (��r) + @L@ �@�r@t � @ (��r)@t = 0) r:� @L@ (r�r)��r�+ @@t 0@ @L@ �@�r@t ���r1A = 0) @�@t +r:j = 0;a continuity equation, just like in e-m theory or ordinary QM. Here, � = @L@(@�r@t ) :� i�rs�s and j = @L@(r�r) :� i�rs�s(dropping the irrelevant constant in�nitesimal parameter �). Integrating the continuity equation we have:Z @�@t d3x+ Z r:jd3x = 0) ddt Z �d3x+ Z j:dS = 0:As we are integrating over an in�nite volume we can usually say that the currents on the surface are negligible i.e.R j:dS = 0 from which it follows that ddt Z �d3x = dQdt = 0:This tells us that we have a conserved quantity Q, a kind of �charge�, and an associated conserved �current.� This isNoether's theorem, that for every continuous symmetry there is a conserved �charge� and a corresponding conserved�current�. 3



For our �rst application, consider the Dirac Lagrangian L =  (i
�@� �m) =  �i
0@0 + i
 :r�m� . This isobviously invariant under  !  0 = e�i� i.e. a simple multiplication by a phase factor. The associated symmetry iscalled, rather grandly, �U(1)�. This just means (as in �U(2)� etc) that the transformation is described by a 1�1 unitarymatrix - and of course a 1 � 1 matrix is just a single number, and since it's unitary it must be just a phase factor.Furthermore, there is some additional (rather important) jargon. This symmetry is called a global U(1) symmetry,because the phase factor is a constant throughout all of space and time - it is the same everywhere and at all times.In the next Lecture we shall consider the local version, in which � is allowed to vary with x.To get at the symmetry current in this case, we recall that Noether's Theorem needs only the in�nitesimal form ofthe transformation, which is  !  0 = (1� i�) , which means � = �i� . So, applying the above results for � andj, we get (cancelling the � ) � = @L@(@ @t ) :� i =  :i
0:� i =  
0 j = @L@(r ) :� i =  :i
 :� i =  
  ) j� =  
� :In this case �Q�= R  
0 d3x = R  y d3x, which is just the integrated probability density for this fermion species. Notehow the Example of Lecture 5 guarantees that this quantity does transform as a 4-vector under Lorentz transformations!Now let's consider a more complicated scenario where we have two Dirac �elds u and d with equal mass andinteractions (which we shall neglect) which do not distinguish between u and d. We expect this will have to do withisospin again, this time in the context of �elds rather than simple particle states. The Lagrangian is� u (i
�@� �m) u + � d (i
�@� �m) d = 	(i
�@� �m)	where we have to watch the very compressed notation rather carefully; here	 = � 	u	d �in SU(2) space, with 	u = � �u�u �in Dirac space, and similarly for 	d. So the 	 above has 8 components, 4 for the Dirac spinor and two for the �u� d�- ness.This Lagrangian is invariant under 	! 	0 =U	; where U is acting in the u�d space, and is such that UyU = I.SoU is a 2�2 unitary matrix,U 2 U(2). When we studied isospin in Lecture 5, we �got rid of� an overall phase factorinU, and concentrated our attention onU's which had determinant equal to 1, and which belonged to SU(2); these wecalled Q. From our present perspective, we can understand rather better now why we should at this stage eliminatethe phase factor from the U's: the reason is that such a phase factor is exactly the global U(1) transformation wehave already considered.....so there is no need to include it again. The only slight di�erence this time is that sinceboth  u and  d are transformed by the same phase factor, the resulting conserved �charge density� is �u + �d, whichwhen integrated gives the total probablity for both ups and downs.So, we remove a phase factor by requiring detU = 1, and rename the transformation matrix Q ( Q 2 SU(2) ).Such transformations are called �global SU(2)� transformations in this context, because (again) the elements of Q donot depend on the space-time point x.As before, we need only consider in�nitesimal transformations of the familiar for Q we have,Q = 1� ia:� =2under which 	0 = (1� ia:� =2)	:Here the a are the usual three in�nitesimal parameters. Let's look at Noether's theorem for the case where only a1is non-zero. In this case we will have (remember the in�nitesimal parameter is factored away) � = @L@( @	@t ) :� i2�1	 =12 �	
0�1	 and j = @L@(r ) :� i2�1	 = 12 �	
 �1	: We call this 4-vector current V �1 :V �1 = �12 �	
0�1	; 12 �	
 �1	� = 12 �	
��1	:4



Similarly, for the general case where a2 and a3 are also non-zero, we haveV �2 = 12 �	
��2	V �3 = 12 �	
��3	:We can write all three currents in one package as V� = 12 �	
� � 	. Once again, the notation is very compressed.The �bold face, vector� aspect has to be understood as referring to an isospin triplet ( compare qy � q in SU(2) ), whilethe ��� refers to the Lorentz 4-vector character. This package is really using everything we have learned up to now!The three conserved charges are Ii = R 12	y�i	d3x, which are simply the three components of the isospin . Similarlyfor SU(3), the same working would lead to 8 currentsV �i = 12 �	
��i	where i=1,...,8, and where 	 = 0@ uds 1A for �avour, or 0@ rgb 1A for colour:We have time for one more example.....Chiral Symmetry:Consider one species of free fermion, with L = � (i
�@� �m) . We are going to look at a new kind of global U(1)transformation, this one involving the Dirac matrix 
5:  !  0 = ei�
5 . For in�nitesimal transformations we have, !  0 = (1 + i�
5)  y !  0y =  y (1� i�
5) :The Lagrangian changes to L! L0 =  y (1� i�
5) 
0 (i
�@� �m) (1 + i�
5) ) L! L0 =  y
0 (i
�@� �m) � i� y
5
0 (i
�@� �m) + i� y
0 (i
�@� �m) 
5 :Now 
5
0
�@� = 
0
�@�
5 but 
5
0 = �
0
5) L! L0 = L� 2i� 
5 m:So actually this is not a symmetry of L. But we can still work out what the corresponding Noether current wouldbe, which is A� =  
�
5 . The reason we call this one an �A� rather than a �V � is that the 
5 changes the parity,so that this object is an axial vector rather than an ordinary one. Now, since L is not in fact invariant under thistransformation, we dont expect A� to be divergenceless (i.e. conserved). And indeed we �nd@�A� = 2im 
5 :Why did we go to all this trouble over something that wasn't a symmetry? Simply because it is a symmetry if m = 0!i.e. if the fermion is massless. So here is a case of a symmetry which exists if a certain term in the Lagrangian isabsent (here, the mass), but is �broken� if that term is present. In our case, if our spin�12 particle is massless, thenclearly the above result us that @�A� = 0 i.e. the current is conserved, and we have a good symmetry. So masslessspin-12 particles have another symmetry called �chiral symmetry� which is to do with the handedness of the particles(remember (1� 
5) projects out the left-handed Dirac component). This symmetry is called a global (independent ofx ) chiral U(1) symmetry. Recall the massless spinors � and � of Lecture 4 which had de�nite helicities!There are also �Non-Abelian� global chiral symmetries. If the u and d �elds are both e�ectively massless, then wehave the following axial vector SU(2) currents: A�i = 12 �	
�
5�i	where 	 = � 	u	d � :5



To the extent that the quark masses are �small�, this might be expected to be �quite a good� symmetry. In fact, thesituation is much more subtle: the chiral SU(2) �avour symmetry is �spontaneously� broken (as opposed to �explicitlybroken� by the mass terms in the Lagrangian). This concept will be brie�y explained in Lecture 8.Remarkably enough, this SU(2) chiral-type symmetry arises somewhere else as well - as the symmetry associatedwith weak interactions! There, the symmetry currents we deal with are just the �left-handed� ones , of the type12 �	
�(1� 
5)� 	.Enlarging 	 to three components and replacing �i by �i, we get 8 axial vector currents which would be conserved(in the �avour case) if the u; d; s quarks were all massless. This is clearly a less good symmetry.....
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