
Introduction to SymmetriesI.J.R.AitchisonApril 6, 2001Lecture 2:Rotations and Angular Momentum.We are going to follow very closely what we did for translations. To conform with most people's conventions weshall de�ne our �positive rotation� as a rotation of the axes through a negative angle (i.e. clockwise) . (In the caseof translations, the analogous de�nition would be that whereas previously we said x0 = x � a, now we will be sayingx0 = x+ a, so the corresponding operator bUx(a) is bUx(a) = e�iap̂=�h.) Consider then such a rotation about the z-axis:x0 = x cos� �y sin�y0 = x sin� +y cos�z0 = zi.e. r0 = Rz(�) rwhere Rz(�) = 0@ cos� � sin� 0sin� cos� 00 0 1 1A and r = 0@ xyz 1A :Generally, r0 = Rr where R is any real 3x3 matrix such that r0Tr0 = rTr : the length of the vector r is unchangedunder a rotation. We can rewrite this asr0Tr0 = (Rr)T (Rr) = rTRTRr = rTr:The last equality has to be true for all x; y; z varying independently of each other, and this can only be the case ifRTR = I. All such 3 x 3 matrices represent rotations. Taking the determinant of both sides of this last equation, weget det �RTR� = det (I) = +1) det �RT� : det (R) = +1:Note that it is a standard result that the determinant of a matrix equals the determinant of the transpose of the samematrix, so (det (R))2 = +1;and then det (R) = �1:Those R's with det (R) = �1 are e�ectively a combination of a parity transformation/re�ection:x! x0 = �xy ! y0 = �yz ! z0 = �zfollowed by/preceded by a rotation (the re�ection and rotation operations commute because the re�ection operationis simply a -1 multiplicative factor). We only deal with continuous symmetries in this course so we forget about R's1



with det (R) = �1. We shall stick to R's with det (R) = +1; these are referred to as �proper rotations,� or �special� -no re�ections.[Check that RTz (�)Rz (�) = I and det (Rz(�)) = +1]The set of all matricesR such that RTR = I and det (R) = +1 form a group called SO(3). �S� is for �special�, meaningdet (R) = +1; �O� is for �orthogonal� meaning RTR = I; and �3� is for three real dimensions.A number of rules (�group axioms�) have to be satis�ed before any old set of things constitutes a group. One isthat there should be a rule for associating two elements in the set (a �binary operation�) such that the so-associatedpair is itself one of the elements in the set (�the set is closed under a binary operation�). In our case, the binaryoperation is matrix multiplication, and closure under this means that if we take a rotation matrix and multiply it byanother rotation matrix (both members of SO(3)) then the resulting matrix is also a rotation and a member of SO(3).A second group axiom is that every element should have an inverse which is in the group. This is easy to see forRz(�): if I rotate by � say the inverse matrix rotates by �� and both are clearly in SO(3). You can generalise thisto more complicated SO(3) rotations, and the fact is that all such rotations have an inverse also in SO(3).Groups must also by de�nition contain an identity. In our case this is obviously:I = 0@ 1 0 00 1 00 0 1 1A :The fourth and �nal axiom in the de�nition of a group is that the binary operation must be associative. In ourcase this means simply R1 (R2R3) = (R1R2)R3 :In�nitesimal rotations are of particular interest in the study of rotation groups:r! r0 = r+ a� rwhere a = �n , which is a rotation through the in�nitesimal angle � about an axis along the unit vector n . Forinstance if n = (0; 0; 1) (a unit vector along the z-axis) then:x0 = x� �yy0 = y + �xz0 = zwhich is the same as what we would get using Rz(�) in the limit �! � i.e. sin �! � and cos �! 1:So we can do coordinate transformations. How do they a�ect the Physics? The key question is: What wavefunctionwill the people in the primed frame need to use, so as to describe consistently the same physics as people in the unprimedframe? They must use  0 (r0) such that  0 (r0) =  (r) (compare the case of translations). Let's play with the algebraa bit:  0 (Rr) =  (r))  0 (r) =  �R�1r� :This little manipulation tells us what  0 actually is. For instance in the case of R = Rz(�), 0 (x0; y0; z0) =  (x; y; z))  0 (x cos�� y sin�; x sin�+ y cos�; z) =  (x; y; z))  0 (x; y; z) =  (x cos�+ y sin�;�x sin�+ y cos�; z) :For �! � this means,  0 (x; y; z) =  (x+ �y;��x+ y; z))  0 (x; y; z) =  (x; y; z) + �y@ dx � �x@ @y :::)  0 (x; y; z) = �1 + �y @@x + �x @@y� (x; y; z)2



)  0 (x; y; z) =  1� i�bLz�h ! (x; y; z) ;where bLz = (r� p)z = �i�hx @@y+i�hy @@x is the angular momentum operator for the z-component of angular momentum(because we have only considered rotations about the z-axis). So  0(r) = �1� i�bLz�h � (r) for this in�nitesimal rotation.In words, what this important equation tells us is what we have to do to the function  (�operate on it with�1� i�bLz�h � �) to produce  0 - which is the answer to our question!For a �nite rotation about the z-axis we then have 0(r) = e�i�bLz�h  (r):For a general in�nitesimal rotation,  0(r) = (1� ia:bL) (r) = (1� i�n:bL) (r);and for a general �nite rotation  0(r) = e�i�n:bL�h  (r)(a rotation of � about the n axis). We call e�i�n:bL�h the rotation operator, denoted by bUR, where R is (in this case)the rotation by � about the axis n. bLz is the generator of rotations about the z-axis; the same goes for the x and yaxes. So �nally  0(r) = bUR (r)tells us what the �primed� wavefunction is in terms of the unprimed one, and the rotation operator bUR. Notice thatboth sides of all these last equations are evaluated at the same point r.Here a most important remark needs to be made: the operator bUR is unitary, in the usual quantum-mechanical sense i.e bUyR bUR = I. This is clearly needed in order to preserve the normalisation of  between thetwo frames. Note also how such bU 's have the generic form � exponential of i times a Hermitian operator � where the�Hermitian operator� is a generator. Putting this another way, with such a unitary operator is associated a Hermitiangenerator of in�nitesimal transformations which, precisely because it is Hermitian, is an observable. In this case, ofcourse, the generators are the angular momentum operators.The situation with rotations is �richer� than with translations. The generators of translations were p̂x; p̂y; p̂z andthese all commute; on the other hand the rotation generators bLx; bLy; bLzdo not, as we all know, since they are just theangular momentum operators in quantum mechanics, with commutation relationshbLi; bLji = i�ijkbLk:This is known as the algebra of the generators of SO(3), or just as the SO(3) algebra, for short.Just as in the case of translations, it may be the case that the Hamiltonian is invariant under the SO(3) transfor-mation in which case bH0(r) = bUR bH(r) bU�1R = bH(r):(Compare the similar thing for translations in the last lecture.) So if the Hamiltonian is invariant as above,bUR bH(r) = bH(r) bUR;which requires that hbL; bHi = 0:So the eigenvalues of bL are constants of the motion, and �angular momentum is conserved�. But we cannot generallyhave states for which two or more components of bL all have well de�ned values because they don't commute. Howeverit is true that bL2 = bL2x + bL2y + bL2z commutes with any operator bLi (where i = x; y; z). Usually the states are chosento be eigenstates of bL2and of bLz , as well as of bH:We can imagine generalisations of the above state of a�airs, in which the Hermitian generators of some symmetryare observable conserved quantities - i.e. their eigenvalues are constants of the motion.3



Symmetry and Degeneracy.We have: bH(r) (r) = E (r):So bUR bH(r) bU�1R bUR (r) = bH0(r) 0(r) = E bUR (r);and if bH0(r) = bH(r) then bH(r) 0(r) = E 0(r):What this is saying is that  0(r) has the same eigenvalue, E, of bH(r)as  (r) does. The conclusions we draw from thisdepend on whether the level E is degenerate or not:� if E is non-degenerate then only one distinct wavefunction can belong to it and  0(r) must be proportional to (r) (this proportionality factor can only be a phase factor, so as to preserve the probability density j (r)j2)� if E is degenerate then several distinct � (r) 's � can have the same eigenvalueE. There will be the correspondingnumber of �  0(r) 's�, and the �  0(r)'s� will, in general, be linear superpositions of the �  (r)'s �.In the case where the level E is degenerate we need to distinguish the �di�erent  (r)'s� by a label n,  n(r). Then anyparticular  0m(r) is a linear combination of the various  n(r)'s: 0m(r) =Xn Dnm(R) n(r);where Dnm(R) is a matrix of coe�cients for the  n(r)'s, for the rotation R. Note the order of the indices n;m onDnm !In Dirac notation  m(r) = hrjmi, while  0m(r) = bUR m(r) = hrj bURjmi . Sohrjmi0 = hrj bURjmi =Xn hrjni hnj bURjmior, stripping away the hrj from everything,jmi0 = bURjmi =Xn jnihnj bURjmi =Xn Dnm(R)jni:The superposition coe�cients Dnm(R) are just the matrix elements of the rotation operator bUR in the basis fjnig.Another important remark comes here: these D matrices are unitary matrices, just as the operators bUR ( whosematrix elements they are) are unitary operators. [Exercise: prove the D 's are unitary!]Consider now two rotations, �rst R then S i.e. SR. What is the corresponding Dnm(SR) ? Under ��rst R, thenS �,  m(r) !  0m(r) = bUS bUR m(r);hence we de�ne bUSR = bUS bUR; and 0m(r) = bUSR m(r) = bUS bUR m(r) = bUS Xn Dnm(R) n(r)! :As the D's are just numbers we can bring the bUS operator inside the summation as follows, 0m(r) =Xn Dnm(R)�bUS n(r)� =Xn Dnm(R) Xp Dpn(S) p!)  0m(r) = bUSR m(r) =Xp  Xn Dpn(S)Dnm(R)! p(r):4



The left hand side of the above equation is also, by de�nition,bUSR m(r) =Xp Dpm(SR) p(r):Comparing this to the previous equation we see that:Dpm(SR) =Xn Dpn(S)Dnm(R):The right hand side is just matrix multiplication! So the D matrices multiply together in exactly the same way as therotation group elements R;S::::: (which is obviously the same way as the operators bUR; bUS; ::::). This being the casethe D matrices are said to form a matrix representation of the group SO(3). The degenerate wavefunctions  m(r)aresaid to form a basis for this representation. If the number of degenerate states is d, then the D's are d�d matricesand the representation is said to be d-dimensional. Incidentally, people sometimes get momentarily puzzled by thefact that what the matrices D are representing are the elements of SO(3), which are themselves matrices.... It's OK.All we are saying is that there are lots of other matrices that multiply together the same way that the SO(3) matricesdo. It is pretty amazing, all the same!Example:Suppose we have three degenerate states (our basis),  1(r) = x,  2(r) = y,  3(r) = z. Consider a rotation Rz(�). 0m(r0) =  m(r) 0m(Rz(�)r) =  m(r) 0m(r) =  m �R�1z (�)r�)  0m(r) =  m (x cos�+ y sin�;�x sin�+ y cos�; z) :The function  1(r) is just x, i.e. the function  1 simply �returns� the �rst component of its vector argument. So 01(r) =  1 (x cos�+ y sin�;�x sin�+ y cos�; z) = x cos�+ y sin�which we can write as  01(r) =  1(r) cos�+  2(r) sin� =Xm Dm1(Rz(�)) m(r)and then read o� D11(Rz(�)) = cos�; D21(Rz(�)) = sin�; D31(Rz(�)) = 0:By considering  2(r) and  3(r) in the same way, we can �nd D12; D22; D32; D13; D23; D33: These all form the elementsof a particular D matrix: D(1)(Rz(�)) = 0@ cos� � sin� 0sin� cos� 00 0 1 1A :Note that this D(1) is entirely real, so rather than being unitary it is orthogonal i.e. in SO(3) - in fact, it is actuallyRz(�) itself! (not really surprising considering our basis functions are  1(r) = x;  2(r) = y;  3(r) = z, and westarted by considering transformations of the vector r).By considering in�nitesimal transformations ( cos �! 1; sin�! � ) we can get a matrix representation for thegenerator bLz: D(1)(Rz(�)) = 0@ 1 �� 0� 1 00 0 1 1A = 1� i�L(1)z�h ;where L(1)z = �h0@ 0 �i 0i 0 00 0 0 1A :The �(1)� stands for �l = 1� because the three basis wavefunctions are (as far as rotations are concerned) the same as(linear combinations of) p-state wavefunctions; we shall not put hats on symbols standing for matrices - they represent5



the things with hats on, in a particular basis. By considering rotations about the x-axis and y-axis, we can similarly�nd: L(1)x = �h0@ 0 0 00 0 �i0 i 0 1A and L(1)y = �h0@ 0 0 i0 0 0�i 0 0 1A ;where hL(1)x ; L(1)y i = i�hL(1)z :So the required commutation relations (of the SO(3) algebra) are satis�ed by this matrix representation of the algebraof the generators of SO(3) (or just �matrix representation of the generators of SO(3)�), with dimension d=3 (3 � 3matrices). It is an interesting exercise to check that for the �nite rotation case, the matrixD(1)(Rz(�)) can be writtenas e�i�L(1)z (compare the similar result with 2� 2 matrices in the next lecture).
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