
Introduction to SymmetriesI.J.R.AitchisonApril 5, 2001Lecture 1:Translations and Linear Momentum.We start by considering a very simple example of a �continuous symmetry� - that of one-dimensional translations. Thebasic idea is that physics should not depend on our particular choice of coordinate system - for instance, as we shalldiscuss in this Lecture, where we choose to locate the origin (or, in the next Lecture, how we choose to orientate theaxes).Suppose, then, that we have one coordinate system S and a physical point P whose coordinates in S are (x; y; z).And suppose we have another coordinate system S0 whose origin is shifted by a along the x- axis of S , so that thecoordinates of the same physical point P referred to the new system S0 are (x0; y0; z0) where x0 = x� a; y0 = y; z0 = z:We shall now forget about the x- and y- dimensions, which are una�ected by this one-dimensional translation, anddeal only with the x coordinates. People in system S will use a wavefunction  (x) to describe physics, and willcalculate a physical probability density j  (x) j2. How about people using the system S0? It must be the case thattheir description, in terms of their wavefunction and their coordinate x0, must represent the same �objective physics�asis represented by j  (x) j2. This is a physical �lump of probability� sitting someplace - it is here and not somewhereelse, and all observers have got to agree on where as a matter of fact it is, what shape it is, etc. So our basic questionis this: what wavefunction  0 must people in S0 use, with their coordinate x0, so that they are consistently describingthe same physical situation as the people in S, using coordinate x ?Let's take a concrete example:  (x) = Ne�x2=x20 :This of course is just a Gaussian, centred on the origin x = 0 of system S. N is a normalisation constant and x0controls the width of the Gaussian. So j  (x) j2 is a lump of probability sitting at the place called x = 0 accordingto people in S. The people in S0 had better give a true representation of it, using their coordinate x0 and theirwavefunction  0. How can they ensure this? Let's make a (wrong) guess - let's guess that you don't need to changethe functional form of the wavefunction, all you have to do is use the same wavefunction but make its argument x0rather than x. In other words, our guess is that the S0 people should use  (x0). What does this look like? Well, weknow that x0 = x� a. So  (x0) =  (x� a) = Ne�(x�a)2=x20which is a Gaussian centred on x = a, not on x = 0 ! So this is an incorrect representation of the physics as describedby people in S. We have to change the functional form of the wavefunction, when changing coordinate system, as wellas the actual coordinates.The right answer to the question �what wavefunction should people in S0 use?� is : they must use a di�erentwavefunction,  0, such that when  0 is evaluated at x0 it does produce the same physical probability distribution as  does when evaluated at x. The simplest way to arrange this is obviously to demand that 0(x0) =  (x)which is a very important equation![Aside: you may be wondering.... couldn't there be a phase factor of the form ei� on the RHS? This would cancelout in the modulus squared giving the probability distribution... And another thing - couldn't  on the RHS bereplaced by  � , because this too would give the same probability distribution...Yes to both! Wigner sorted all thisout a long time ago. The complex conjugate is needed only if our transformation involves time-reversal; otherwise, itis  , and the phase factor can be chosen to be unity.] 1



OK, so what is this  0 ? we have  0(x0) =  (x) with x0 = x� a. So the equation  0(x� a) =  (x) has to be truefor all values of x. Let's replace � x � by � x+ a �. Then we must have 0(x) =  (x+ a):This equation tells us what the function  0(x) is, namely 0(x) = Ne�(x+a)2=x20Compare this with the de�nition of  (x), above; it is clearly not the same function of x as  is. Fine; so what is  0(x0)? It is plainly  0(x0) = Ne�(x0+a)2=x20 :Does this do the job we want it to? i.e. does it correctly describe, for the S0 people, the right lump of probability?Well,  0(x0) = Ne�(x0+a)2=x20 = Ne�(x�a+a)2=x20 = Ne�x2=x20 =  (x)as required, where we just substituted x0 = x � a. In pictures,  0(x0) is a Gaussian centred on the point x0 = �a,which is of course exactly the same physical pooint as x = 0. So it works.Next we consider a very important special case of the above - namely, a translation through a very small (in�nites-imal) distance �. We shall see, remarkably, how in�nitesimal translations are closely connected to the momentumoperators in quantum mechanics....and from this will follow the deep connection between translation invariance andmomentum conservation. We shall consider many other examples of such in�nitesimal transformations in the laterlectures. Note that this kind of analysis can only be done for continuous transformations i.e. those that can be builtup, precisely, from a series of (in�nitely many, in the limit) tiny in�nitesimal steps - not like Parity, for instance, whichis the transformation r0 = �r and which is a discrete transformation (as opposed to continuous).Consider then the fundamental relation  0(x0) =  (x)(which de�nes the function  0 ) . Written di�erently, this is 0(x) =  (x+ a) as we saw. Now take a! �: We have 0(x) =  (x+ �)=  (x) + �@ @x expanding by Taylor0s theorem to �rst order=  (x) + i��h :� i�h @@x =  (x) + i��h p̂x (x)= �1 + i��h p̂x� (x)where p̂x = �i�h @@x is the familiar quantum-mechanical momentum operator. The last equality is very important - ittells us the answer to our question �what is the function  0 ? � (at least, for this in�nitesimal translation). To get 0 in this case, the answer is you operate on  with the indicated operator �1 + i��h  ̂x�. This is of course just a fancyway of saying the operator �1 + � @@x� , as in the second line....but the connection to the q.m. mementum operator iscrucial, physically. Note also that, as expected, the �new� wavefunction  0 is in�nitesimally close to the �old� one  .Now let's go back to a �nite translation a. In this case we can't cut o� the Taylor expansion at just the �rst orderterm, but must (formally) keep all the terms: 0(x) =  (x+ a) =  (x) + a@ (x)@x + a22 @2 (x)@x2 + :::::::= �1 + a @@x + a22 @2@x2 + ::::::� (x)= �ea @@x � (x) check by re � expanding the exponential; formally!= �ea: i�h :�i�h @@x� (x)or equivalently  0(x) = eiap̂x=�h (x):Note particularly that the arguments are the same, namely x, on both sides of this last equation. It therefore tellsus directly the relation between the function  0 and the function  : namely (rather formally, it must be admitted) 0 is that function which is obtained by applying the operator eiap̂x=�h to  . So this answers our question about whatwavefunction the S0 people should use. 2



Let's introduce a special notation for this important operator that constructs  0 for us:Ûx(a) = eiap̂x=�h:Then, it is easy to see that it is a unitary operator:Û yx(a) = e�iap̂yx=�h = e�iap̂x=�husing the fact that p̂x is Hermitian: (p̂x)y = p̂x. And it's clear that e�iap̂x=�h is the operator appropriate to adisplacement of �a, so it must be just the inverse of Ûx(a) :Û yx(a) = Û�1x (a)and so Û yx(a):Ûx(a) = Iwhich is the statement that Ûx(a) is unitary (� U y:U = I � ).There is an important point to note here about the relationship between the unitary operator Ûx(a) and theHermitian operator p̂x. Basically, we can always make a unitary operator Û by writingÛ = eiĥwhere ĥ is Hermitian (try taking the dagger of both sides). And we can slip in a real parameter in front of theĥ without altering the unitarity property. So something of the form ei�ĥ where ĥ is Hermitian and � is real willalways get us a unitary operator. Just as this kind of thing �does the job� for translations (in the sense that Ûx(a)acting on  produces  0), so we will see in the other lectures exactly the same kind of operators arising in the caseof other transformations. In this context, the operator up in the exponent, namely ĥ, is called the generator of thetransformation, or more pedantically the in�nitesimal generator, or the generator of in�nitesimal transformations.You can see the sense of this language in the case (translation) that we have just done: p̂x was indeed the operatorthat appeared when we did the in�nitesimal translation. And we �exponentiated� it to get the operator for the �nitetranslation case. So with the unitary operators e�ecting �nite transformations there will be associated Hermitianoperators e�ecting (or generating) in�nitesimal ones....and since in quantum mechanics Hermitian operators representobservables these �generators� must have an important physics role to play! (as of course we have already noted in thecase of the translation generator, which is precisely the momentum).So far, we have discussed only the question of how to ensure consistency between the wavefunctions used by S andS0. How about the Hamiltonians in the two systems? Consider the time-independent Schrodinger equation (in onedimension for simplicity) as written by the people in S:Ĥ(x) (x) = E (x):The people in S0 will write their own Schrodinger equation:Ĥ0(x0) 0(x0) = E 0(x0)but they had better use the same E!! the value of which must be independent of which set of coordinates is used.So, just as the S0 people must use a di�erent wavefunction  0(x0), so must they also (in general) use a di�erentHamiltonian Ĥ0(x0). What is this di�erent Hamiltonian? Well, look at the last two equations, remembering that wehave already decided that  0(x0) =  (x): for consistency, we must requireĤ 0(x0) = Ĥ(x);very much as for the wavefunctions.Let's see the consequence of this for our particular case x0 = x�a:We require Ĥ0(x�a) = Ĥ(x), or Ĥ0(x) = Ĥ(x+a).This says that Ĥ0 evaluated at x has to equal Ĥ evaluated at x + a. Now, what kinds of Hamiltonian might we beconsidering? Take for example the Hamiltonian for a free particle in 1-D:Ĥ(x) = ��h22m @2@x2 :3



What would Ĥ(x+ a) be? Note that @@(x+ a) = @@xand @2(@(x + a))2 = @2@x2so that, in this case, �Ĥ0(x) = Ĥ(x+ a) = Ĥ(x) � :[Aside: Would this be true if we added in a potential V (x)? ] The last equation tells us that, in this case,Ĥ0(x) = Ĥ(x)which is saying that this free-particle Ĥ does not, in fact, change its functional form �under a translation� - i.e. it isinvariant. Any of the equalities contained in the equation *.......* above are equally good statements of this invariance.Now let's see what follows from this invariance of the free Hamiltonian under translations. Consider an in�nitesimaldisplacement. We have Ĥ(x) = Ĥ(x+ �) = Ĥ(x) + �@Ĥ@x expanding to �rst orderfrom which it follows that @Ĥ(x)@x = 0:This means that Ĥ does not have any explicit dependence on x ( what if we had a V (x)? )We're now going to show that this last result is equivalent to saying that the momentum operator p̂x commuteswith Ĥ. Consider [p̂x; Ĥ(x)] (x) for any wavefunction  (x). This equals�i�h @@x �Ĥ(x) (x)� � �Ĥ(x):� i�h@ @x�= �i�h�@Ĥ(x)@x � (x) � i�hĤ(x)@ @x + i�hĤ(x)@ @x :The last two terms cancel leaving the result[p̂x; Ĥ(x)] (x) = �i�h@Ĥ(x)@x  (x):Since this holds for any  , we can interpret it as the operator equation (true acting on any function)[p̂x; Ĥ(x)] = �i�h@Ĥ(x)@x :But we had @Ĥ(x)@x = 0 if Ĥ(x) was invariant under translations. So such invariance implies that[p̂x; Ĥ(x)] = 0i.e. p̂x commutes with Ĥ(x). Now, from general quantum mechanics we should know that the eigenvalues of operatorswhich commute with the Hamiltonian are constants of the motion i.e. are conserved, and their values can be speci�edsimultaneously with the energy eigenvalue. So in this case invariance under translations in the x-direction implies thatthe x-component of momentum px (the number, not the operator) is conserved. [What if we had a V (x) ? ]There is a more formal way of writing much of this, that we shall use more of in later examples. Let's go back tothe time-independent Schrodinger equation in system S:Ĥ(x) (x) = E (x):We know that  0(x) = Ûx(a) (x):It follows that Ûx(a)�Ĥ(x) (x)� = Ûx(a)E (x) = EÛx(a) (x) = E 0(x):4



Now the term on the extreme left can be written asÛx(a)Ĥ(x)Û�1x (a)Ûx(a) (x) = hÛx(a)Ĥ(x)Û�1x (a)i 0(x):Hence hÛx(a)Ĥ(x)Û�1x (a)i 0(x) = E 0(x):But the Schrodinger equation in S0 is, as we have seen,Ĥ0(x) 0(x0) = E 0(x0);and this is true for all x0, so there is nothing to stop us writing it asĤ 0(x) 0(x) = E 0(x):Comparing with the previous equation we can identifyĤ0(x) = Ûx(a)Ĥ(x)Û�1x (a):We see that while wavefunctions transform by Û ,operators transform by ÛcOpÛ�1.Furthermore, if Ĥ is invariant under these translations, then as we have seenĤ0(x) = Ĥ(x):This immediately gives Ûx(a)Ĥ(x)Û�1x (a) = Ĥ(x)or Ûx(a)Ĥ(x) = Ĥ(x)Ûx(a)so that Ûx(a) commutes with the Hamiltonian. Recalling thatÛx(a) = eiap̂x=�h;we deduce that p̂x must commute with the Hamiltonian in this case (of invariance), as before.Note that all of this generalises immediately to three dimensions via the operatorÛx(ax):Ûy(ay):Ûz(az) = exp(ia : p̂=�h);where, since any p̂i commutes with any p̂j , it does not matter in which order we write the terms on the LHS, and sothe RHS is uniquely de�ned (this will not be quite the same for rotations!).
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